A. 學習python有什麼好的書籍推薦
本書循序漸進、由淺入深地詳細講解了Python
3語言開發的核心技術,並通過具體實例的實現過程演練了各個知識點的具體使用流程。通過兩個綜合實例的實現過程,介紹了Python
3語言在綜合項目中的使用流程。全書內容循序漸進,以「技術解惑」和「範例演練」貫穿全書,引領讀者全面掌握Python 3語言。
書中共有900多個實例和範例、300多個正文實例、600多個拓展範例、77個課後練習、63個技術解惑、兩大綜合案例,每個知識點除了一個實例外,還有兩個拓展範例,達到舉一反三的效果。
《易學Python》採用簡潔、有趣、易學的方式對Python 3編程語言進行了講解,其風格與通篇介紹編程特性、羅列語言功能的大多數編程圖書不同,而是引導讀者帶著好奇,帶著問題去學習、掌握Python編程語言,繼而編寫真實而有用的程序。
無塵茄論你是零基礎的Python初學人員,還讓此是具有其他語言編程經驗,但是想從事Python開發的人員,《易學Python》都將帶領你踏上有趣的Python學習之路。
暢銷經典的Python書,兼顧Python2和Python3,Python開發人員的案頭常備。本書涵蓋了成為一名技術全面的Python開發人員所需的一切內容。本書講解了應用派滑察開發相關的多個領域,而且書中的內容可以立即應用到項目開發中。此外,本書還包含了一些使用Python
2和Python 3編寫的代碼案例,以及一些代碼移植技巧。有些代碼片段甚至無須修改就可以運行在Python 2.x或Python 3.x上。
Python是一種強大並通俗易懂的編程語言,而且它易學又好用!但是關於學習Python語言的書大多很枯燥無趣,讀起來沒什麼樂趣。本書把你帶入一個鮮活的Python編程世界。每章後面都配有編程練習來幫助訓練思維並加強理解。
B. 決策樹演算法原理
決策樹是通過一系列規則對數據進行分類的過程。它提供一種在什麼條件下會得到什麼值的類似規則的方法。決策樹分為分類樹和回歸樹兩種,分類樹對離散變數做決策樹,回歸樹對連續變數做決策樹。
如果不考慮效率等,那麼樣本所有特徵的判斷級聯起來終會將某一個樣本分到一個類終止塊上。實際上,樣本所有特徵中有一些特徵在分類時起到決定性作用,決策樹的構造過程就是找到這些具有決定性作用的特徵,根據其決定性程度來構造一個倒立的樹--決定性作用最大的那個特徵作為根節點,然後遞歸找到各分支下子數據集中次大的決定性特徵,直至子數據集中所有數據都屬於同一類。所以,構造決策樹的過程本質上就是根據數據特徵將數據集分類的遞歸過程,我們需要解決的第一個問題就是,當前數據集上哪個特徵在劃分數據分類時起決定性作用。
一棵決策樹的生成過程主要分為以下3個部分:
特徵選擇:特徵選擇是指從訓練數據中眾多的特徵中選擇一個特徵作為當前節點的分裂標准,如何選擇特徵有著很多不同量化評估標准標准,從而衍生出不同的決策樹演算法。
決策樹生成: 根據選擇的特徵評估標准,從上至下遞歸地生成子節點,直到數據集不可分則停止決策樹停止生長。 樹結構來說,遞歸結構是最容易理解的方式。
剪枝:決策樹容易過擬合,一般來需要剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有預剪枝和後剪枝兩種。
劃分數據集的最大原則是:使無序的數據變的有序。如果一個訓練數據中有20個特徵,那麼選取哪個做劃分依據?這就必須採用量化的方法來判斷,量化劃分方法有多重,其中一項就是「資訊理論度量信息分類」。基於資訊理論的決策樹演算法有ID3、CART和C4.5等演算法,其中C4.5和CART兩種演算法從ID3演算法中衍生而來。
CART和C4.5支持數據特徵為連續分布時的處理,主要通過使用二元切分來處理連續型變數,即求一個特定的值-分裂值:特徵值大於分裂值就走左子樹,或者就走右子樹。這個分裂值的選取的原則是使得劃分後的子樹中的「混亂程度」降低,具體到C4.5和CART演算法則有不同的定義方式。
ID3演算法由Ross Quinlan發明,建立在「奧卡姆剃刀」的基礎上:越是小型的決策樹越優於大的決策樹(be simple簡單理論)。ID3演算法中根據資訊理論的信息增益評估和選擇特徵,每次選擇信息增益最大的特徵做判斷模塊。ID3演算法可用於劃分標稱型數據集,沒有剪枝的過程,為了去除過度數據匹配的問題,可通過裁剪合並相鄰的無法產生大量信息增益的葉子節點(例如設置信息增益閥值)。使用信息增益的話其實是有一個缺點,那就是它偏向於具有大量值的屬性--就是說在訓練集中,某個屬性所取的不同值的個數越多,那麼越有可能拿它來作為分裂屬性,而這樣做有時候是沒有意義的,另外ID3不能處理連續分布的數據特徵,於是就有了C4.5演算法。CART演算法也支持連續分布的數據特徵。
C4.5是ID3的一個改進演算法,繼承了ID3演算法的優點。C4.5演算法用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足在樹構造過程中進行剪枝;能夠完成對連續屬性的離散化處理;能夠對不完整數據進行處理。C4.5演算法產生的分類規則易於理解、准確率較高;但效率低,因樹構造過程中,需要對數據集進行多次的順序掃描和排序。也是因為必須多次數據集掃描,C4.5隻適合於能夠駐留於內存的數據集。
CART演算法的全稱是Classification And Regression Tree,採用的是Gini指數(選Gini指數最小的特徵s)作為分裂標准,同時它也是包含後剪枝操作。ID3演算法和C4.5演算法雖然在對訓練樣本集的學習中可以盡可能多地挖掘信息,但其生成的決策樹分支較大,規模較大。為了簡化決策樹的規模,提高生成決策樹的效率,就出現了根據GINI系數來選擇測試屬性的決策樹演算法CART。
決策樹演算法的優點:
(1)便於理解和解釋,樹的結構可以可視化出來
(2)基本不需要預處理,不需要提前歸一化,處理缺失值
(3)使用決策樹預測的代價是O(log2m),m為樣本數
(4)能夠處理數值型數據和分類數據
(5)可以處理多維度輸出的分類問題
(6)可以通過數值統計測試來驗證該模型,這使解釋驗證該模型的可靠性成為可能
(7)即使該模型假設的結果與真實模型所提供的數據有些違反,其表現依舊良好
決策樹演算法的缺點:
(1)決策樹模型容易產生一個過於復雜的模型,這樣的模型對數據的泛化性能會很差。這就是所謂的過擬合.一些策略像剪枝、設置葉節點所需的最小樣本數或設置數的最大深度是避免出現該問題最為有效地方法。
(2)決策樹可能是不穩定的,因為數據中的微小變化可能會導致完全不同的樹生成。這個問題可以通過決策樹的集成來得到緩解。
(3)在多方面性能最優和簡單化概念的要求下,學習一棵最優決策樹通常是一個NP難問題。因此,實際的決策樹學習演算法是基於啟發式演算法,例如在每個節點進行局部最優決策的貪心演算法。這樣的演算法不能保證返回全局最優決策樹。這個問題可以通過集成學習來訓練多棵決策樹來緩解,這多棵決策樹一般通過對特徵和樣本有放回的隨機采樣來生成。
(4)有些概念很難被決策樹學習到,因為決策樹很難清楚的表述這些概念。例如XOR,奇偶或者復用器的問題。
(5)如果某些類在問題中佔主導地位會使得創建的決策樹有偏差。因此,我們建議在擬合前先對數據集進行平衡。
(1)當數據的特徵維度很高而數據量又很少的時候,這樣的數據在構建決策樹的時候往往會過擬合。所以我們要控制樣本數量和特徵的之間正確的比率;
(2)在構建決策樹之前,可以考慮預先執行降維技術(如PCA,ICA或特徵選擇),以使我們生成的樹更有可能找到具有辨別力的特徵;
(3)在訓練一棵樹的時候,可以先設置max_depth=3來將樹可視化出來,以便我們找到樹是怎樣擬合我們數據的感覺,然後在增加我們樹的深度;
(4)樹每增加一層,填充所需的樣本數量是原來的2倍,比如我們設置了最小葉節點的樣本數量,當我們的樹層數增加一層的時候,所需的樣本數量就會翻倍,所以我們要控制好樹的最大深度,防止過擬合;
(5)使用min_samples_split(節點可以切分時擁有的最小樣本數) 和 min_samples_leaf(最小葉節點數)來控制葉節點的樣本數量。這兩個值設置的很小通常意味著我們的樹過擬合了,而設置的很大意味著我們樹預測的精度又會降低。通常設置min_samples_leaf=5;
(6)當樹的類比不平衡的時候,在訓練之前一定要先平很數據集,防止一些類別大的類主宰了決策樹。可以通過采樣的方法將各個類別的樣本數量到大致相等,或者最好是將每個類的樣本權重之和(sample_weight)規范化為相同的值。另請注意,基於權重的預剪枝標准(如min_weight_fraction_leaf)將比不知道樣本權重的標准(如min_samples_leaf)更少偏向主導類別。
(7)如果樣本是帶權重的,使用基於權重的預剪枝標准將更簡單的去優化樹結構,如mn_weight_fraction_leaf,這確保了葉節點至少包含了樣本權值總體總和的一小部分;
(8)在sklearn中所有決策樹使用的數據都是np.float32類型的內部數組。如果訓練數據不是這種格式,則將復制數據集,這樣會浪費計算機資源。
(9)如果輸入矩陣X非常稀疏,建議在調用fit函數和稀疏csr_matrix之前轉換為稀疏csc_matrix,然後再調用predict。 當特徵在大多數樣本中具有零值時,與密集矩陣相比,稀疏矩陣輸入的訓練時間可以快幾個數量級。
C. 想要自學python,有什麼好的學習方法推薦
人生苦短,我選Python!
在學習之前先給自己定一個目標規劃,培養自己對編程的興趣,在學習過程中一定要碰敲代碼,學會做筆記,但不用刻意去記住這些代碼,理解代碼比記住代碼更重要。學會使用搜索引擎的能力,學會自己解決問題,除了這些要多看大牛的技術專欄,通過對比大牛認清自己的現狀並及時做出調整和改變。
學編程是一個長期的過程。所有各位小夥伴一定要有自己的一個長期計劃,並把長期的計劃分解成段目標,目標完成後給自己一定的激勵,一句話,加油就完事兒了。
D. GBDT —— 梯度提升決策樹
GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一種迭代的決策樹演算法,該演算法由多棵決策樹組成,所有樹的結論累加起來做最終答案。它在被提出之初就和SVM一起被認為是泛化能力較強的演算法。
GBDT中的樹是回歸樹(不是分類樹),GBDT用來做回歸預測,調整後也可以用於分類。
GBDT主要由三個概念組成:Regression Decistion Tree(即DT),Gradient Boosting(即GB),Shrinkage (演算法的一個重要演進分枝,目前大部分源碼都按該版本實現)。搞定這三個概念後就能明白GBDT是如何工作的。
提起決策樹(DT, Decision Tree) 絕大部分人首先想到的就是C4.5分類決策樹。但如果一開始就把GBDT中的樹想成分類樹,那就錯了。千萬不要以為GBDT是很多棵分類樹。決策樹分為兩大類,回歸樹和分類樹。前者用於預測實數值,如明天的溫度、用戶的年齡、網頁的相關程度;後者用於分類標簽值,如晴天/陰天/霧/雨、用戶性別、網頁是否是垃圾頁面。這里要強調的是,前者的結果加減是有意義的,如10歲+5歲-3歲=12歲,後者則無意義,如男+男+女=到底是男是女?GBDT的核心在於累加所有樹的結果作為最終結果,就像前面對年齡的累加(-3是加負3),而分類樹的結果顯然是沒辦法累加的,所以 GBDT中的樹都是回歸樹,不是分類樹 ,這點對理解GBDT相當重要(盡管GBDT調整後也可用於分類但不代表GBDT的樹是分類樹)。
回歸樹總體流程類似於分類樹,區別在於,回歸樹的每一個節點都會得一個預測值,以年齡為例,該預測值等於屬於這個節點的所有人年齡的平均值。分枝時窮舉每一個feature的每個閾值找最好的分割點,但衡量最好的標准不再是最大熵,而是最小化平方誤差。也就是被預測出錯的人數越多,錯的越離譜,平方誤差就越大,通過最小化平方誤差能夠找到最可靠的分枝依據。分枝直到每個葉子節點上人的年齡都唯一或者達到預設的終止條件(如葉子個數上限), 若最終葉子節點上人的年齡不唯一,則以該節點上所有人的平均年齡做為該葉子節點的預測年齡。
回歸樹演算法如下圖(截圖來自《統計學習方法》5.5.1 CART生成):
梯度提升(Gradient boosting)是一種用於回歸、分類和排序任務的機器學習技術 [1] ,屬於Boosting演算法族的一部分。Boosting是一族可將弱學習器提升為強學習器的演算法,屬於集成學習(ensemble learning)的范疇。Boosting方法基於這樣一種思想:對於一個復雜任務來說,將多個專家的判斷進行適當的綜合所得出的判斷,要比其中任何一個專家單獨的判斷要好。通俗地說,就是「三個臭皮匠頂個諸葛亮」的道理。梯度提升同其他boosting方法一樣,通過集成(ensemble)多個弱學習器,通常是決策樹,來構建最終的預測模型。
Boosting、bagging和stacking是集成學習的三種主要方法。不同於bagging方法,boosting方法通過分步迭代(stage-wise)的方式來構建模型,在迭代的每一步構建的弱學習器都是為了彌補已有模型的不足。Boosting族演算法的著名代表是AdaBoost,AdaBoost演算法通過給已有模型預測錯誤的樣本更高的權重,使得先前的學習器做錯的訓練樣本在後續受到更多的關注的方式來彌補已有模型的不足。與AdaBoost演算法不同,梯度提升方法在迭代的每一步構建一個能夠沿著梯度最陡的方向降低損失(steepest-descent)的學習器來彌補已有模型的不足。經典的AdaBoost演算法只能處理採用指數損失函數的二分類學習任務 [2] ,而梯度提升方法通過設置不同的可微損失函數可以處理各類學習任務(多分類、回歸、Ranking等),應用范圍大大擴展。另一方面,AdaBoost演算法對異常點(outlier)比較敏感,而梯度提升演算法通過引入bagging思想、加入正則項等方法能夠有效地抵禦訓練數據中的噪音,具有更好的健壯性。這也是為什麼梯度提升演算法(尤其是採用決策樹作為弱學習器的GBDT演算法)如此流行的原因,
提升樹是迭代多棵回歸樹來共同決策。當採用平方誤差損失函數時,每一棵回歸樹學習的是之前所有樹的結論和殘差,擬合得到一個當前的殘差回歸樹,殘差的意義如公式:殘差 = 真實值 - 預測值 。提升樹即是整個迭代過程生成的回歸樹的累加。 GBDT的核心就在於,每一棵樹學的是之前所有樹結論和的殘差,這個殘差就是一個加預測值後能得真實值的累加量。
提升樹利用 加法模型和前向分步演算法 實現學習的優化過程。當損失函數時平方損失和指數損失函數時,每一步的優化很簡單,如平方損失函數學習殘差回歸樹。
提升方法其實是一個比adaboost概念更大的演算法,因為adaboost可以表示為boosting的前向分布演算法(Forward stagewise additive modeling)的一個特例,boosting最終可以表示為:
其中的w是權重,Φ是弱分類器(回歸器)的集合,其實就是一個加法模型(即基函數的線性組合)
前向分布演算法 實際上是一個貪心的演算法,也就是在每一步求解弱分類器Φ(m)和其參數w(m)的時候不去修改之前已經求好的分類器和參數:
OK,這也就是提升方法(之前向分布演算法)的大致結構了,可以看到其中存在變數的部分其實就是極小化損失函數 這關鍵的一步了,如何選擇損失函數決定了演算法的最終效果(名字)……這一步你可以看出演算法的「趨勢」,以後再單獨把「趨勢」拿出來說吧,因為我感覺理解演算法的關鍵之一就是理解演算法公式的「趨勢」
不同的損失函數和極小化損失函數方法決定了boosting的最終效果,我們現在來說幾個常見的boosting:
廣義上來講,所謂的Gradient Boosting 其實就是在更新的時候選擇梯度下降的方向來保證最後的結果最好,一些書上講的「殘差」 方法其實就是L2Boosting吧,因為它所定義的殘差其實就是L2Boosting的Derivative,接下來我們著重講一下弱回歸器(不知道叫啥了,自己編的)是決策樹的情況,也就是GBDT。
GBDT演算法可以看成是由K棵樹組成的加法模型:
解這一優化問題,可以用前向分布演算法(forward stagewise algorithm)。因為學習的是加法模型,如果能夠從前往後,每一步只學習一個基函數及其系數(結構),逐步逼近優化目標函數,那麼就可以簡化復雜度。這一學習過程稱之為Boosting。具體地,我們從一個常量預測開始,每次學習一個新的函數,過程如下:
舉個例子,參考自一篇博客, 該博客舉出的例子較直觀地展現出多棵決策樹線性求和過程以及殘差的意義。
還是年齡預測,簡單起見訓練集只有4個人,A,B,C,D,他們的年齡分別是14,16,24,26。其中A、B分別是高一和高三學生;C,D分別是應屆畢業生和工作兩年的員工。如果是用一棵傳統的回歸決策樹來訓練,會得到如下圖1所示結果:
現在我們使用GBDT來做這件事,由於數據太少,我們限定葉子節點做多有兩個,即每棵樹都只有一個分枝,並且限定只學兩棵樹。我們會得到如下圖2所示結果:
在第一棵樹分枝和圖1一樣,由於A,B年齡較為相近,C,D年齡較為相近,他們被分為兩撥,每撥用平均年齡作為預測值。此時計算殘差 (殘差的意思就是: A的預測值 + A的殘差 = A的實際值) ,所以A的殘差就是16-15=1(注意,A的預測值是指前面所有樹累加的和,這里前面只有一棵樹所以直接是15,如果還有樹則需要都累加起來作為A的預測值)。進而得到A,B,C,D的殘差分別為-1,1,-1,1。然後我們拿殘差替代A,B,C,D的原值,到第二棵樹去學習,如果我們的預測值和它們的殘差相等,則只需把第二棵樹的結論累加到第一棵樹上就能得到真實年齡了。這里的數據顯然是我可以做的,第二棵樹只有兩個值1和-1,直接分成兩個節點。此時所有人的殘差都是0,即每個人都得到了真實的預測值。
換句話說,現在A,B,C,D的預測值都和真實年齡一致了。Perfect!:
A: 14歲高一學生,購物較少,經常問學長問題;預測年齡A = 15 – 1 = 14
B: 16歲高三學生;購物較少,經常被學弟問問題;預測年齡B = 15 + 1 = 16
C: 24歲應屆畢業生;購物較多,經常問師兄問題;預測年齡C = 25 – 1 = 24
D: 26歲工作兩年員工;購物較多,經常被師弟問問題;預測年齡D = 25 + 1 = 26
那麼哪裡體現了Gradient呢?其實回到第一棵樹結束時想一想,無論此時的cost function是什麼,是均方差還是均差,只要它以誤差作為衡量標准,殘差向量(-1, 1, -1, 1)都是它的全局最優方向,這就是Gradient。
講到這里我們已經把GBDT最核心的概念、運算過程講完了!沒錯就是這么簡單。
該例子很直觀的能看到,預測值等於所有樹值得累加,如A的預測值 = 樹1左節點 值 15 + 樹2左節點 -1 = 14。
因此,給定當前模型 fm-1(x),只需要簡單的擬合當前模型的殘差。現將回歸問題的提升樹演算法敘述如下:
答案是過擬合。過擬合是指為了讓訓練集精度更高,學到了很多」僅在訓練集上成立的規律「,導致換一個數據集當前規律就不適用了。其實只要允許一棵樹的葉子節點足夠多,訓練集總是能訓練到100%准確率的(大不了最後一個葉子上只有一個instance)。在訓練精度和實際精度(或測試精度)之間,後者才是我們想要真正得到的。
我們發現圖1為了達到100%精度使用了3個feature(上網時長、時段、網購金額),其中分枝「上網時長>1.1h」 很顯然已經過擬合了,這個數據集上A,B也許恰好A每天上網1.09h, B上網1.05小時,但用上網時間是不是>1.1小時來判斷所有人的年齡很顯然是有悖常識的;
相對來說圖2的boosting雖然用了兩棵樹 ,但其實只用了2個feature就搞定了,後一個feature是問答比例,顯然圖2的依據更靠譜。(當然,這里是LZ故意做的數據,所以才能靠譜得如此狗血。實際中靠譜不靠譜總是相對的) Boosting的最大好處在於,每一步的殘差計算其實變相地增大了分錯instance的權重,而已經分對的instance則都趨向於0。這樣後面的樹就能越來越專注那些前面被分錯的instance。就像我們做互聯網,總是先解決60%用戶的需求湊合著,再解決35%用戶的需求,最後才關注那5%人的需求,這樣就能逐漸把產品做好,因為不同類型用戶需求可能完全不同,需要分別獨立分析。如果反過來做,或者剛上來就一定要做到盡善盡美,往往最終會竹籃打水一場空。
Shrinkage(縮減)的思想認為,每次走一小步逐漸逼近結果的效果,要比每次邁一大步很快逼近結果的方式更容易避免過擬合。即它不完全信任每一個棵殘差樹,它認為每棵樹只學到了真理的一小部分,累加的時候只累加一小部分,通過多學幾棵樹彌補不足。用方程來看更清晰,即
沒用Shrinkage時:(yi表示第i棵樹上y的預測值, y(1~i)表示前i棵樹y的綜合預測值)
y(i+1) = 殘差(y1~yi), 其中: 殘差(y1~yi) = y真實值 - y(1 ~ i)
y(1 ~ i) = SUM(y1, ..., yi)
Shrinkage不改變第一個方程,只把第二個方程改為:
y(1 ~ i) = y(1 ~ i-1) + step * yi
即Shrinkage仍然以殘差作為學習目標,但對於殘差學習出來的結果,只累加一小部分(step 殘差)逐步逼近目標,step一般都比較小,如0.01~0.001(注意該step非gradient的step),導致各個樹的殘差是漸變的而不是陡變的。直覺上這也很好理解,不像直接用殘差一步修復誤差,而是只修復一點點,其實就是把大步切成了很多小步。 本質上,Shrinkage為每棵樹設置了一個weight,累加時要乘以這個weight,但和Gradient並沒有關系 *。 這個weight就是step。就像Adaboost一樣,Shrinkage能減少過擬合發生也是經驗證明的,目前還沒有看到從理論的證明。
該版本GBDT幾乎可用於所有回歸問題(線性/非線性),相對logistic regression僅能用於線性回歸,GBDT的適用面非常廣。亦可用於二分類問題(設定閾值,大於閾值為正例,反之為負例)。
參考資料:
http://blog.csdn.net/w28971023/article/details/8240756
http://blog.csdn.net/dark_scope/article/details/24863289
https://www.jianshu.com/p/005a4e6ac775
https://www.zybuluo.com/yxd/note/611571
E. 有哪本書介紹關於「決策樹」的概念和畫法
sparc.nfu.e.tw/~dlyang/crm92c9.ppt
決策樹分析
http://wiki.mbalib.com/w/index.php?title=%E5%86%B3%E7%AD%96%E6%A0%91%E6%B3%95
決策樹
F. 什麼是基於決策樹的遙感影像分類啊
決策樹分類法己被應用於許多分類問題,但應用於遙感分類的研究成果並不多見。決策樹分類法具有靈活、直觀、清晰、強健、運算效率高等特點,在遙感分類問題上表現出巨大優勢。本文以廣東省廣州市從化地區的SPOT5衛星遙感影像為研究對象,基於決策樹分類演算法在遙感影像分類方面的深厚潛力,探討了6種不同的決策樹演算法—包括單一決策樹模(CART,CHAIR,exhaustive,QUEST和組合決策樹模型(提升樹,決策樹森林)。首先對決策樹演算法結構、演算法理論進行了闡述,然後利用這些決策樹演算法進行遙感土地覆蓋分類實驗,並把獲得的結果與傳統的最大似然分類和人工神經元網路分類進行比較。
基於決策樹分類演算法在遙感影像分類方面的深厚潛力,探討了3種不同的決策樹演算法(UDT、MDT和HDT).首先對決策樹演算法結構、演算法理論進行了闡述:具體利用決策樹演算法進行遙感土地覆蓋分類實驗,並把獲得的結果與傳統統計分類法進行比較.研究表明,決策樹分類法相對簡單、明確,分類結構直觀,有諸多優勢.
G. 數據挖掘-決策樹演算法
決策樹演算法是一種比較簡易的監督學習分類演算法,既然叫做決策樹,那麼首先他是一個樹形結構,簡單寫一下樹形結構(數據結構的時候學過不少了)。
樹狀結構是一個或多個節點的有限集合,在決策樹里,構成比較簡單,有如下幾種元素:
在決策樹中,每個葉子節點都有一個類標簽,非葉子節點包含對屬性的測試條件,用此進行分類。
所以個人理解,決策樹就是 對一些樣本,用樹形結構對樣本的特徵進行分支,分到葉子節點就能得到樣本最終的分類,而其中的非葉子節點和分支就是分類的條件,測試和預測分類就可以照著這些條件來走相應的路徑進行分類。
根據這個邏輯,很明顯決策樹的關鍵就是如何找出決策條件和什麼時候算作葉子節點即決策樹終止。
決策樹的核心是為不同類型的特徵提供表示決策條件和對應輸出的方法,特徵類型和劃分方法包括以下幾個:
注意,這些圖中的第二層都是分支,不是葉子節點。
如何合理的對特徵進行劃分,從而找到最優的決策模型呢?在這里需要引入信息熵的概念。
先來看熵的概念:
在數據集中,參考熵的定義,把信息熵描述為樣本中的不純度,熵越高,不純度越高,數據越混亂(越難區分分類)。
例如:要給(0,1)分類,熵是0,因為能明顯分類,而均衡分布的(0.5,0.5)熵比較高,因為難以劃分。
信息熵的計算公式為:
其中 代表信息熵。 是類的個數, 代表在 類時 發生的概率。
另外有一種Gini系數,也可以用來衡量樣本的不純度:
其中 代表Gini系數,一般用於決策樹的 CART演算法 。
舉個例子:
如果有上述樣本,那麼樣本中可以知道,能被分為0類的有3個,分為1類的也有3個,那麼信息熵為:
Gini系數為:
總共有6個數據,那麼其中0類3個,佔比就是3/6,同理1類。
我們再來計算一個分布比較一下:
信息熵為:
Gini系數為:
很明顯,因為第二個分布中,很明顯這些數偏向了其中一類,所以 純度更高 ,相對的信息熵和Gini系數較低。
有了上述的概念,很明顯如果我們有一組數據要進行分類,最快的建立決策樹的途徑就是讓其在每一層都讓這個樣本純度最大化,那麼就要引入信息增益的概念。
所謂增益,就是做了一次決策之後,樣本的純度提升了多少(不純度降低了多少),也就是比較決策之前的樣本不純度和決策之後的樣本不純度,差越大,效果越好。
讓信息熵降低,每一層降低的越快越好。
度量這個信息熵差的方法如下:
其中 代表的就是信息熵(或者其他可以度量不純度的系數)的差, 是樣本(parent是決策之前, 是決策之後)的信息熵(或者其他可以度量不純度的系數), 為特徵值的個數, 是原樣本的記錄總數, 是與決策後的樣本相關聯的記錄個數。
當選擇信息熵作為樣本的不純度度量時,Δ就叫做信息增益 。
我們可以遍歷每一個特徵,看就哪個特徵決策時,產生的信息增益最大,就把他作為當前決策節點,之後在下一層繼續這個過程。
舉個例子:
如果我們的目標是判斷什麼情況下,銷量會比較高(受天氣,周末,促銷三個因素影響),根據上述的信息增益求法,我們首先應該找到根據哪個特徵來決策,以信息熵為例:
首先肯定是要求 ,也就是銷量這個特徵的信息熵:
接下來,就分別看三個特徵關於銷量的信息熵,先看天氣,天氣分為好和壞兩種,其中天氣為好的條件下,銷量為高的有11條,低的有6條;天氣壞時,銷量為高的有7條,銷量為低的有10條,並且天氣好的總共17條,天氣壞的總共17條。
分別計算天氣好和天氣壞時的信息熵,天氣好時:
根據公式 ,可以知道,N是34,而天氣特徵有2個值,則k=2,第一個值有17條可以關聯到決策後的節點,第二個值也是17條,則能得出計算:
再計算周末這個特徵,也只有兩個特徵值,一個是,一個否,其中是有14條,否有20條;周末為是的中有11條銷量是高,3條銷量低,以此類推有:
信息增益為:
另外可以得到是否有促銷的信息增益為0.127268。
可以看出,以周末為決策,可以得到最大的信息增益,因此根節點就可以用周末這個特徵進行分支:
注意再接下來一層的原樣本集,不是34個而是周末為「是」和「否」分別計算,為是的是14個,否的是20個。
這樣一層一層往下遞歸,直到判斷節點中的樣本是否都屬於一類,或者都有同一個特徵值,此時就不繼續往下分了,也就生成了葉子節點。
上述模型的決策樹分配如下:
需要注意的是,特徵是否出現需要在分支當中看,並不是整體互斥的,周末生成的兩個分支,一個需要用促銷來決策,一個需要用天氣,並不代表再接下來就沒有特徵可以分了,而是在促銷決策層下面可以再分天氣,另外一遍天氣決策下面可以再分促銷。
決策樹的模型比較容易解釋,看這個樹形圖就能很容易的說出分類的條件。
我們知道屬性有二元屬性、標稱屬性、序數屬性和連續屬性,其中二元、標稱和序數都是類似的,因為是離散的屬性,按照上述方式進行信息增益計算即可,而連續屬性與這三個不同。
對於連續的屬性,為了降低其時間復雜度,我們可以先將屬性內部排序,之後取相鄰節點的均值作為決策值,依次取每兩個相鄰的屬性值的均值,之後比較他們的不純度度量。
需要注意的是,連續屬性可能在決策樹中出現多次,而不是像離散的屬性一樣在一個分支中出現一次就不會再出現了。
用信息熵或者Gini系數等不純度度量有一個缺點,就是會傾向於將多分支的屬性優先分類——而往往這種屬性並不是特徵。
例如上面例子中的第一行序號,有34個不同的值,那麼信息熵一定很高,但是實際上它並沒有任何意義,因此我們需要規避這種情況,如何規避呢,有兩種方式:
公式如下:
其中k為劃分的總數,如果每個屬性值具有相同的記錄數,則 ,劃分信息等於 ,那麼如果某個屬性產生了大量劃分,則劃分信息很大,信息增益率低,就能規避這種情況了。
為了防止過擬合現象,往往會對決策樹做優化,一般是通過剪枝的方式,剪枝又分為預剪枝和後剪枝。
在構建決策樹時,設定各種各樣的條件如葉子節點的樣本數不大於多少就停止分支,樹的最大深度等,讓決策樹的層級變少以防止過擬合。
也就是在生成決策樹之前,設定了決策樹的條件。
後剪枝就是在最大決策樹生成之後,進行剪枝,按照自底向上的方式進行修剪,修剪的規則是,評估葉子節點和其父節點的代價函數,如果父節點的代價函數比較小,則去掉這個葉子節點。
這里引入的代價函數公式是:
其中 代表的是葉子節點中樣本個數, 代表的是該葉子節點上的不純度度量,把每個葉子節點的 加起來,和父節點的 比較,之後進行剪枝即可。
H. 決策樹(Decision Tree)
決策樹(Decision Tree)是一種基本的分類與回歸方法,其模型呈樹狀結構,在分類問題中,表示基於特徵對實例進行分類的過程。本質上,決策樹模型就是一個定義在特徵空間與類空間上的條件概率分布。決策樹學習通常包括三個步驟: 特徵選擇 、 決策樹的生成 和 決策樹的修剪 。
分類決策樹模型是一種描述對實例進行分類的樹形結構,決策樹由節點(node)和有向邊(directed edge)組成。節點有兩種類型:內部節點(internal node)和葉節點(leaf node)。內部節點表示一個特徵或屬性,葉節點表示一個類。
利用決策樹進行分類,從根節點開始,對實例的某一特徵進行測試,根據測試結果將實例分配到其子節點;這時,每一個子節點對應著該特徵的一個取值。如此遞歸地對實例進行測試並分配,直至達到葉節點。最後將實例分到葉節點的類中。
決策樹是給定特徵條件下類的條件概率分布,這一條件概率分布定義在特徵區間的一個劃分(partiton)上。將特徵空間劃分為互不相交的單元(cell)或區域(region),並在每個單元定義一個類的概率分布就構成了一個條件概率分布。決策樹的一條路徑對應劃分中的一個單元,決策樹所表示的條件概率分布由各個單元給定條件下類的條件概率分布組成。假設X為表示特徵的隨機變數,Y為表示類的隨機變數,那麼這個條件概率分布可以表示成P(Y|X)。X取值於給定劃分下單元的集合,Y取值於類的集合,各葉節點(單元)上的條件概率往往偏向於某一個類,即屬於某一類的概率較大,決策樹分類時將該節點的實例分到條件概率大的那一類去。也就以為著決策樹學習的過程其實也就是由數據集估計條件概率模型的過程,這些基於特徵區間劃分的類的條件概率模型由無窮多個,在進行選擇時,不僅要考慮模型的擬合能力還要考慮其泛化能力。
為了使模型兼顧模型的擬合和泛化能力,決策樹學習使用正則化的極大似然函數來作為損失函數,以最小化損失函數為目標,尋找最優的模型。顯然從所有可能的決策樹中選取最優決策樹是NP完全問題,所以在實際中通常採用啟發式的方法,近似求解這一最優化問題: 通過遞歸的選擇最優特徵,根據該特徵對訓練數據進行劃分直到使得各個子數據集有一個最好的分類,最終生成特徵樹 。當然,這樣得到的決策樹實際上是次最優(sub-optimal)的。進一步的,由於決策樹的演算法特性,為了防止模型過擬合,需要對已生成的決策樹自下而上進行剪枝,將樹變得更簡單,提升模型的泛化能力。具體來說,就是去掉過於細分的葉節點,使其退回到父節點,甚至更高的節點,然後將父節點或更高的節點改為新的葉節點。如果數據集的特徵較多,也可以在進行決策樹學習之前,對數據集進行特徵篩選。
由於決策樹是一個條件概率分布,所以深淺不同的決策樹對應著不同復雜度的概率模型,決策樹的生成對應模型的局部選擇,決策樹的剪枝對應著模型的全局選擇。
熵(Entropy) 的概念最早起源於物理學,最初物理學家用這個概念度量一個熱力學系統的無序程度。在1948年, 克勞德·艾爾伍德·香農 將熱力學的熵,引入到 資訊理論 ,因此它又被稱為 香農熵 。在資訊理論中,熵是對不確定性的量度,在一條信息的熵越高則能傳輸越多的信息,反之,則意味著傳輸的信息越少。
如果有一枚理想的硬幣,其出現正面和反面的機會相等,則拋硬幣事件的熵等於其能夠達到的最大值。我們無法知道下一個硬幣拋擲的結果是什麼,因此每一次拋硬幣都是不可預測的。因此,使用一枚正常硬幣進行若干次拋擲,這個事件的熵是一 比特 ,因為結果不外乎兩個——正面或者反面,可以表示為 0, 1 編碼,而且兩個結果彼此之間相互獨立。若進行 n 次 獨立實驗 ,則熵為 n ,因為可以用長度為 n 的比特流表示。但是如果一枚硬幣的兩面完全相同,那個這個系列拋硬幣事件的熵等於零,因為 結果能被准確預測 。現實世界裡,我們收集到的數據的熵介於上面兩種情況之間。
另一個稍微復雜的例子是假設一個 隨機變數 X ,取三種可能值 ,概率分別為 ,那麼編碼平均比特長度是: 。其熵為 。因此<u>熵實際是對隨機變數的比特量和順次發生概率相乘再總和的</u> 數學期望 。
依據玻爾茲曼H定理,香農把隨機變數X的熵 定義為:
其中 是隨機變數X的信息量,當隨機變數取自有限樣本時,熵可以表示為:
若 ,則定義 。
同理可以定義條件熵 :
很容易看出,條件熵(conditional entropy) 就是X給定條件下Y的條件概率分布的熵對X的數學期望。當熵和條件熵中的概率有極大似然估計得到時,所對應的熵和條件熵分別稱為檢驗熵(empirical entropy)和經驗條件熵(empirical conditional entropy).
熵越大,隨機變數的不確定性就越大,從定義可以驗證:
當底數 時,熵的單位是 ;當 時,熵的單位是 ;而當 時,熵的單位是 .
如英語有26個字母,假如每個字母在文章中出現的次數平均的話,每個字母的信息量 為:
同理常用漢字2500有個,假設每個漢字在文章中出現的次數平均的話,每個漢字的信息量 為:
事實上每個字母和漢字在文章中出現的次數並不平均,少見字母和罕見漢字具有相對較高的信息量,顯然,由期望的定義,熵是整個消息系統的平均消息量。
熵可以用來表示數據集的不確定性,熵越大,則數據集的不確定性越大。因此使用 劃分前後數據集熵的差值 量度使用當前特徵對於數據集進行劃分的效果(類似於深度學習的代價函數)。對於待劃分的數據集 ,其劃分前的數據集的熵 是一定的,但是劃分之後的熵 是不定的, 越小說明使用此特徵劃分得到的子集的不確定性越小(也就是純度越高)。因此 越大,說明使用當前特徵劃分數據集 時,純度上升的更快。而我們在構建最優的決策樹的時候總希望能更快速到達純度更高的數據子集,這一點可以參考優化演算法中的梯度下降演算法,每一步沿著負梯度方法最小化損失函數的原因就是負梯度方向是函數值減小最快的方向。同理:在決策樹構建的過程中我們總是希望集合往最快到達純度更高的子集合方向發展,因此我們總是選擇使得信息增益最大的特徵來劃分當前數據集 。
顯然這種劃分方式是存在弊端的,按信息增益准則的劃分方式,當數據集的某個特徵B取值較多時,依此特徵進行劃分更容易得到純度更高的數據子集,使得 偏小,信息增益會偏大,最終導致信息增益偏向取值較多的特徵。
設 是 個數據樣本的集合,假定類別屬性具有 個不同的值: ,設 是類 中的樣本數。對於一個給定樣本,它的信息熵為:
其中, 是任意樣本屬於 的概率,一般可以用 估計。
設一個屬性A具有 個不同的值 ,利用屬性A將集合 劃分為 個子集 ,其中 包含了集合 中屬性 取 值的樣本。若選擇屬性A為測試屬性,則這些子集就是從集合 的節點生長出來的新的葉節點。設 是子集 中類別為 的樣本數,則根據屬性A劃分樣本的信息熵為:
其中 , 是子集 中類別為 的樣本的概率。最後,用屬性A劃分樣本子集 後所得的 信息增益(Gain) 為:
即,<u>屬性A的信息增益=劃分前數據的熵-按屬性A劃分後數據子集的熵</u>。 信息增益(information gain)又稱為互信息(matual information)表示得知特徵X的信息而使得類Y的信息的不確定性減少的程度 。信息增益顯然 越小, 的值越大,說明選擇測試屬性A對於分類提供的信息越多,選擇A之後對分類的不確定程度越小。
經典演算法 ID3 使用的信息增益特徵選擇准則會使得劃分更偏相遇取值更多的特徵,為了避免這種情況。ID3的提出者 J.Ross Quinlan 提出了 C4.5 ,它在ID3的基礎上將特徵選擇准則由 信息增益 改為了 信息增益率 。在信息增益的基礎之上乘上一個懲罰參數。特徵個數較多時,懲罰參數較小;特徵個數較少時,懲罰參數較大(類似於正則化)。這個懲罰參數就是 分裂信息度量 的倒數 。
不同於 ID3 和 C4.5 , CART 使用基尼不純度來作為特徵選擇准則。基尼不純度也叫基尼指數 , 表示在樣本集合中一個隨機選中的樣本被分錯的概率 則<u>基尼指數(基尼不純度)= 樣本被選中的概率 * 樣本被分錯的概率</u>。Gini指數越小表示集合中被選中的樣本被分錯的概率越小,也就是說集合的純度越高,反之,集合越不純。
樣本集合的基尼指數:
樣本集合 有m個類別, 表示第 個類別的樣本數量,則 的Gini指數為:
基於某個特徵劃分樣本集合S之後的基尼指數:
CART是一個二叉樹,也就是當使用某個特徵劃分樣本集合後,得到兩個集合:a.等於給定的特徵值的樣本集合 ;b.不等於給定特徵值的樣本集合 。實質上是對擁有多個取值的特徵的二值處理。
對於上述的每一種劃分,都可以計算出基於劃分特=某個特徵值將樣本集合劃分為兩個子集的純度:
因而對於一個具有多個取值(超過2個)的特徵,需要計算以每個取值為劃分點,對樣本集合劃分後子集的純度 ( 表示特徵 的可能取值)然後從所有的劃分可能 中找出Gini指數最小的劃分,這個劃分的劃分點,就是使用特徵 對樣本集合 進行劃分的最佳劃分點。
參考文獻 :
決策樹--信息增益,信息增益比,Geni指數的理解
【機器學習】深入理解--信息熵(Information Entropy)
統計學習方法 (李航)
為了便於理解,利用以下數據集分別使用三種方法進行分類:
在進行具體分析之前,考慮到收入是數值類型,要使用決策樹演算法,需要先對該屬性進行離散化。
在機器學習演算法中,一些分類演算法(ID3、Apriori等)要求數據是分類屬性形式,因此在處理分類問題時經常需要將一些連續屬性變換為分類屬性。一般來說,連續屬性的離散化都是通過在數據集的值域內設定若干個離散的劃分點,將值域劃分為若干區間,然後用不同的符號或整數數值代表落在每個子區間中的數據值。所以,離散化最核心的兩個問題是:如何確定分類數以及如何將連續屬性映射到這些分類值。常用的離散化方法有 等寬法 , 等頻法 以及 一維聚類法 等。
在實際使用時往往使用Pandas的 cut() 函數實現等寬離散化:
可以看到與手工計算的離散化結果相同,需要注意的是,<u> 等寬法對於離群點比較敏感,傾向於不均勻地把屬性值分布到各個區間,導致某些區間數據較多,某些區間數據很少,這顯然不利用決策模型的建立。 </u>
使用四個分位數作為邊界點,對區間進行劃分:
<u> 等頻率離散化雖然避免了等寬離散化的數據分布不均勻的問題,卻可能將相同的數據值分到不同的區間以滿足每個區間具有相同數量的屬性取值的要求。 </u>
使用一維聚類的離散化方法後得到數據集為:
在本次實例中選擇使用基於聚類的離散化方法後得到的數據集進行指標計算。為了預測客戶能否償還債務,使用A(擁有房產)、B(婚姻情況)、C(年收入)等屬性來進行數據集的劃分最終構建決策樹。
單身 :
離婚 :
已婚 :
顯然,由B屬性取值'已婚'劃分得到的子數據集屬於同一個葉節點,無法再進行分類。
接下來,對由B屬性取值'單身'劃分得到的子數據集 再進行最優特徵選擇:
1)計算數據集 總的信息熵,其中4個數據中,能否償還債務為'是'數據有3,'否'數據有1,則總的信息熵:
2)對於A(擁有房產)屬性,其屬性值有'是'和'否'兩種。其中,在A為'是'的前提下,能否償還債務為'是'的有1、'否'的有0;在A為'否'的前提下,能否償還債務為'是'的有2、為'否'的有1,則A屬性的信息熵為:
3)對於B(婚姻情況)屬性,由於已被確定,在這個數據子集信息熵為0
4)對於C(年收入)屬性,其屬性值有'中等輸入'、'低收入'兩種。在C為'中等收入'的前提下,能否償還作為為'是'的有1,為'否'的有0;在C為'低收入'的前提下,能否償還作為為'是'的有2,為'否'的有1;則C屬性的信息熵為:
5)最後分別計算兩個屬性的信息增益值:
信息增益值相同,說明以兩個屬性對數據子集進行劃分後決策樹的純度上升是相同的,此時任選其一成為葉節點即可。
同理,對數據子集 進行最優特徵選擇,發現信息熵為0:
整理得到最終的決策樹:
I. 決策樹演算法是哪個學科要學的內容啊
管理學裡面有的
學計算機的應該也學把~
一般是數據挖掘時會用到。
J. 決策樹的起源
最早的決策樹演算法是由Hunt等人於1966年提出,Hunt演算法是許多決策樹演算法的基礎,包括ID3、C4.5和CART等,本文以Hunt演算法為例介紹決策樹演算法的基本思想及決策樹的一些設計問題。