導航:首頁 > 源碼編譯 > 聚類演算法幾個特徵

聚類演算法幾個特徵

發布時間:2022-09-14 06:01:54

❶ 聚類演算法(上)06

這篇文章的整體排版主要是根據個人的博客來噠,如果感興趣的話可以去我的自己搭建的個人博客看這篇 文章 。

聚類演算法很多,所以和講回歸演算法一樣,分成了上下,上中主要講了傳統的K-Means演算法以及其相應的優化演算法入K-Means++,K-Means||和Canopy等。下中主要講了另外兩種的思路的聚類演算法,即層次聚類和密度聚類。

聚類算就是懟大量未知標注的數據集,按照數據 內部存在的數據特徵 將數據集 劃分為多個不同的類別 ,使類別內的數據比較相似,類別之間的數據相似度比較小,屬於 無監督學習

從定義就可以看出,聚類演算法的關鍵在於計算樣本之間的 相似度 ,也稱為 樣本間的距離

說到聚類演算法,那肯定核心就是計算距離的公式了,目前常用的有以下幾種。
閔可夫斯基距離(Minkowski) :公式2.1

KL距離(相對熵)
思考下條件熵的定義,簡單的來說就是在放生一件事情的時候,發生另一件事的概率。公式如下公式2.7.
註:這里書的概率不是實指概率,而是熵表達的含義。這個公式其實就是條件熵的公式。

傑卡德相似系數(Jaccard)
這個很好理解,它的核心就是使用兩個集合的交集和並集的比率來代表兩者的相似度,也就是說重合的越多越相似。公式如下,公式2.8.

Pearson相關系數
這個就是考研數學中的相關系數,表達就是兩者之間的想關系,所以直接拿來用就好了,公式如下公式2.9。

給定一個有M個對象的數據集,構建一個具有k個簇的模型,其中k<=M。滿足 以下條件:

基本思想:
對於給定的類別數目k,首先給定初始劃分,通過迭代改變樣本和簇的隸屬關系,使的每次處理後得到的劃分方式比上一次的好,即 總的數據集之間的距離和變小了

K-means的核心演算法如下:

再循環中的第二步,我們移動了中心點的位置,把中心點移到了隸屬於該中心點類別的所有樣本的中間,並使用樣本的均值作為位置。這樣子看似是拍腦袋想的移動策略,其實是可以推導出來的。正如聚類演算法思想所指出的,我們要讓所有的點到自己的分類的中心點的歐幾里得距離最小,所以我們設置目標放稱為公式4.1,公式中的1/2是為了之後求導運算方便。我們為了讓目標函數盡可能的小,所以使用了之前一直在使用的思考方式,對其使用梯度下降演算法,求導後得到公式4.2,之後令其等於0,就得到了公式4.3。


最後這個看似不錯的演算法,其實有著不小的缺點,那就是 初值敏感 。我們來仔細想一想,如果兩個不小心隨機生成的初值落到了一個類別中,兩者的距離還特別近,這中情況下就很難正確分類了。除此之外,由於移動策略中使用的是均值,也就是說如果集合中含有非常大的誤差點的話,這樣子會是中心點的設置偏離正確點很遠,所以很多時候我們改用 中值來更新中心點 ,這就是我們說的K-Mediods聚類,即K中值聚類。

總結下K-means演算法
優點:

由於K-Means對初始中心點非常敏感,我們這里就嘗試著通過二分法弱化初始中心點。這種演算法的具體步驟如下:

我們在這個演算法中提到了SSE,這個可以是簇內所有樣本點,到其中心點的距離的總和,代表著簇內的點是不是高度相關。計算公式如下公式4.4。

可以看出在這種演算法下,很好的避開了,兩個中心點都在一起的情況。

K-Means++做的改善,是直接對初始點的生成位置的選擇進行優化的,他的初始點生成策略如下:

Canopy屬於一種「粗略地」聚類演算法,簡單的來說就是,不那麼追求自動獲得最優解,而是引入了一種人為規定的先驗值進行聚類,具體步驟如下:

註:Canopy演算法得到的最終結果的值,聚簇之間是可能存在重疊的,但是不會存在 某個對象不屬於任何聚簇的情況
顯然,這種演算法雖然快,但是很難生成滿足我們應用的模型,所以通常我們將它作為解決K-Means初值敏感的方案,他們合在一起就是Canopy+K-Means演算法。
順序就是先使用Canopy演算法獲得K個聚類中心,然後用這K個聚類中心作為K-Means演算法。這樣子就很好的解決了K-Means初值敏感的問題。

Mini Batch K-Means演算法是K-Means演算法的一種優化變種,採用小規模的數據子集,來減少計算時間。其中採用小規模的數據子集指的是每次訓練使用的數據集是在訓練演算法的時候隨機抽取的數據子集。Mini Batch K-Means演算法可以減少K-Means演算法的收斂時間,而且產生的結果效果只是略差於標准K-Means演算法。
它的演算法步驟如下:

聚類演算法的衡量標准有很多,包括均一性、完整性、V-measure、調整蘭德系數(ARI ,Adjusted Rnd Index)、調整互信息(AMI,Adjusted Mutual Information)以及輪廓系數等等。

均一性:一個簇中只包含一個類別的樣本,則滿足均一性。其實也可以認為就是正確率,即每個聚簇中正確分類的樣本數占該聚簇總樣本數的比例和。其公式如下公式5.1。

完整性:同類別樣本被歸類到相同簇中,則滿足完整性。每個聚簇中正確分類的樣本數占該類型的總樣本數比例的和,通俗的來說就是,我們已分類類別中,分類正確的個數。
其公式如下,公式5.2:

在實際的情況中,均一性和完整性是往往不能兼得的,就好像抓特務時的矛盾一樣,到底是保證每個抓的人都是特務,還是寧可錯抓也不放過一個特務,之間的取捨很難把握。所以再一次貫徹,魚和熊掌不可兼得,我們就加權,於是得到的就是V-measure,其公式如下公式5.3:

蘭德系數(RI,Rand index) ,我用中文看了不少講蘭德系數的博客,其中的文字說明幾乎都是相同的,對個人的理解幫助不是特別大,於是用英文查的。最終理解了這個系數的參數的意思,想看英文說明的,個人覺得還挺好懂的參考 這里 。以下是我個人的講解。

首先,將原數據集中的元素進行兩兩配對形成一個新的數據集,我們稱之為S數據集。這時候,我們將原數據集,根據兩種不同的策略分別劃分成r份和s份,並對這兩個數據集命名為X和Y。在這里我們可以看出,X和Y的元素是相同的,只是他們的劃分方式不同。
接下來我們來思考,S數據集中,每個元素中的兩個樣本,在X和Y中只有兩種可能,就是兩個樣本都在一個子集中,或者不在一個子集中,那麼對於S中的一個元素,只有四種可能性。

接下來引入, 調整蘭德系數(ARI,Adjusted Rnd Index) ,ARI取值范圍 ,值越大,表示聚類結果和真實情況越吻合。從廣義的角度來將,ARI是衡量兩個數據分布的吻合程度的,公式5.5如下:

調整互信息,整體的流程很像ARI,AMI則是對MI進行調整。而MI是使用信息熵來描述的。那麼互信息表示了什麼呢,首先先看下 維基網路的定義 :

之前我們說到的衡量指標都是有標簽的,這里的輪廓系數則是不包含標簽的評價指標。

❷ 四種聚類方法之比較

四種聚類方法之比較
介紹了較為常見的k-means、層次聚類、SOM、FCM等四種聚類演算法,闡述了各自的原理和使用步驟,利用國際通用測試數據集IRIS對這些演算法進行了驗證和比較。結果顯示對該測試類型數據,FCM和k-means都具有較高的准確度,層次聚類准確度最差,而SOM則耗時最長。
關鍵詞:聚類演算法;k-means;層次聚類;SOM;FCM
聚類分析是一種重要的人類行為,早在孩提時代,一個人就通過不斷改進下意識中的聚類模式來學會如何區分貓狗、動物植物。目前在許多領域都得到了廣泛的研究和成功的應用,如用於模式識別、數據分析、圖像處理、市場研究、客戶分割、Web文檔分類等[1]。
聚類就是按照某個特定標准(如距離准則)把一個數據集分割成不同的類或簇,使得同一個簇內的數據對象的相似性盡可能大,同時不在同一個簇中的數據對象的差異性也盡可能地大。即聚類後同一類的數據盡可能聚集到一起,不同數據盡量分離。
聚類技術[2]正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。
1 聚類演算法的分類
目前,有大量的聚類演算法[3]。而對於具體應用,聚類演算法的選擇取決於數據的類型、聚類的目的。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。
主要的聚類演算法可以劃分為如下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法以及基於模型的方法[4-6]。
每一類中都存在著得到廣泛應用的演算法,例如:劃分方法中的k-means[7]聚類演算法、層次方法中的凝聚型層次聚類演算法[8]、基於模型方法中的神經網路[9]聚類演算法等。
目前,聚類問題的研究不僅僅局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類[10]也是聚類分析中研究較為廣泛的一個分支。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如著名的FCM演算法等。
本文主要對k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法通過通用測試數據集進行聚類效果的比較和分析。
2 四種常用聚類演算法研究
2.1 k-means聚類演算法
k-means是劃分方法中較經典的聚類演算法之一。由於該演算法的效率高,所以在對大規模數據進行聚類時被廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。
k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下:

這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值[9]。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下:
輸入:包含n個對象的資料庫和簇的數目k;
輸出:k個簇,使平方誤差准則最小。
步驟:
(1) 任意選擇k個對象作為初始的簇中心;
(2) repeat;
(3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇;
(4) 更新簇的平均值,即計算每個簇中對象的平均值;
(5) until不再發生變化。
2.2 層次聚類演算法
根據層次分解的順序是自底向上的還是自上向下的,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。
凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下:

這里給出採用最小距離的凝聚層次聚類演算法流程:
(1) 將每個對象看作一類,計算兩兩之間的最小距離;
(2) 將距離最小的兩個類合並成一個新類;
(3) 重新計算新類與所有類之間的距離;
(4) 重復(2)、(3),直到所有類最後合並成一類。
2.3 SOM聚類演算法
SOM神經網路[11]是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
(1) 網路初始化,對輸出層每個節點權重賦初值;
(2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
(3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
(4) 提供新樣本、進行訓練;
(5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
2.4 FCM聚類演算法
1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析[12]。
FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。

演算法流程:
(1) 標准化數據矩陣;
(2) 建立模糊相似矩陣,初始化隸屬矩陣;
(3) 演算法開始迭代,直到目標函數收斂到極小值;
(4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。
3 四種聚類演算法試驗
3.1 試驗數據
實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS[13]數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。
3.2 試驗結果說明
文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。

如表1所示,對於四種聚類演算法,按三方面進行比較:(1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和;(2)運行時間:即聚類整個過程所耗費的時間,單位為s;(3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為:

3.3 試驗結果分析
四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。
聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。

❸ 機器學習演算法中的SVM和聚類演算法

相信大家都知道,機器學習中有很多的演算法,我們在進行機器學習知識學習的時候一定會遇到過很多的演算法,而機器學習中的SVM演算法和聚類演算法都是比較重要的,我們在這篇文章中就重點給大家介紹一下這兩種演算法,希望這篇文章能夠幫助大家理解這兩種演算法。

機器學習演算法——SVM

提道機器學習演算法就不得不說一說SVM,這種演算法就是支持向量機,而支持向量機演算法是誕生於統計學習界,這也是機器學習中的經典演算法,而支持向量機演算法從某種意義上來說是邏輯回歸演算法的強化,這就是通過給予邏輯回歸演算法更嚴格的優化條件,支持向量機演算法可以獲得比邏輯回歸更好的分類界線。不過如果通過跟高斯核的結合,支持向量機可以表達出非常復雜的分類界線,從而達成很好的的分類效果。核事實上就是一種特殊的函數,最典型的特徵就是可以將低維的空間映射到高維的空間。

於是問題來了,如何在二維平面劃分出一個圓形的分類界線?其實我們在二維平面可能會很困難,但是通過核可以將二維空間映射到三維空間,然後使用一個線性平面就可以達成類似效果。也就是說,二維平面劃分出的非線性分類界線可以等價於三維平面的線性分類界線。接著,我們可以通過在三維空間中進行簡單的線性劃分就可以達到在二維平面中的非線性劃分效果。而支持向量機是一種數學成分很濃的機器學習演算法。在演算法的核心步驟中,有一步證明,即將數據從低維映射到高維不會帶來最後計算復雜性的提升。於是,通過支持向量機演算法,既可以維持計算效率,又可以獲得非常好的分類效果。因此支持向量機在90年代後期一直占據著機器學習中最核心的地位,基本取代了神經網路演算法。

機器學習演算法——聚類演算法

說完了SVM,下面我們給大家介紹一下聚類演算法,前面的演算法中的一個顯著特徵就是我的訓練數據中包含了標簽,訓練出的模型可以對其他未知數據預測標簽。在下面的演算法中,訓練數據都是不含標簽的,而演算法的目的則是通過訓練,推測出這些數據的標簽。這類演算法有一個統稱,即無監督演算法。無監督演算法中最典型的代表就是聚類演算法。而聚類演算法中最典型的代表就是K-Means演算法。這一演算法被廣大朋友所應用。

現在,我們可以清楚認識到機器學習是一個綜合性很強的學科。在這篇文章中我們給大家介紹了很多關於機器學習中的支持向量機和聚類演算法的相關知識,通過這些知識我們不難發現機器學習中有很多有用的演算法,熟練掌握這些演算法是我們真正學會機器學習的必經之路。

❹ 常用的聚類方法有哪幾種

聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。

1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。

2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。

3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。

4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。

5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。

6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。

(4)聚類演算法幾個特徵擴展閱讀:

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。

它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。

許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。

❺ 聚類演算法有哪幾種

聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。

k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。

其流程如下:

(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;

(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;

(3)重新計算每個(有變化)聚類的均值(中心對象);

(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。

優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。

缺點

1. K 是事先給定的,但非常難以選定;

2. 初始聚類中心的選擇對聚類結果有較大的影響。

❻ 聚類演算法有哪些分類

聚類演算法的分類有:

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K小於N。而且這K個分組滿足下列條件:

(1) 每一個分組至少包含一個數據紀錄;

(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。

例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。

代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。

通常有兩種嘗試方向:統計的方案和神經網路的方案。

(6)聚類演算法幾個特徵擴展閱讀:

聚類演算法的要求:

1、可伸縮性

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。

我們需要具有高度可伸縮性的聚類演算法。

2、不同屬性

許多演算法被設計用來聚類數值類型的數據。但是,應用可能要求聚類其他類型的數據,如二元類型(binary),分類/標稱類型(categorical/nominal),序數型(ordinal)數據,或者這些數據類型的混合。

3、任意形狀

許多聚類演算法基於歐幾里得或者曼哈頓距離度量來決定聚類。基於這樣的距離度量的演算法趨向於發現具有相近尺度和密度的球狀簇。但是,一個簇可能是任意形狀的。提出能發現任意形狀簇的演算法是很重要的。

4、領域最小化

許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。

5、處理「雜訊」

絕大多數現實中的資料庫都包含了孤立點,缺失,或者錯誤的數據。一些聚類演算法對於這樣的數據敏感,可能導致低質量的聚類結果。

6、記錄順序

一些聚類演算法對於輸入數據的順序是敏感的。例如,同一個數據集合,當以不同的順序交給同一個演算法時,可能生成差別很大的聚類結果。開發對數據輸入順序不敏感的演算法具有重要的意義。

❼ 用於數據挖掘的聚類演算法有哪些,各有何優勢

聚類方法的分類,主要分為層次化聚類演算法,劃分式聚類演算法,基於密度的聚類演算法,基於網格的聚類演算法,基於模型的聚類演算法等。

而衡量聚類演算法優劣的標准主要是這幾個方面:處理大的數據集的能力;處理任意形狀,包括有間隙的嵌套的數據的能力;演算法處理的結果與數據輸入的順序是否相關,也就是說演算法是否獨立於數據輸入順序;處理數據雜訊的能力;是否需要預先知道聚類個數,是否需要用戶給出領域知識;演算法處理有很多屬性數據的能力,也就是對數據維數是否敏感。

.聚類演算法主要有兩種演算法,一種是自下而上法(bottom-up),一種是自上而下法(top-down)。這兩種路徑本質上各有優勢,主要看實際應用的時候要根據數據適用於哪一種,Hierarchical methods中比較新的演算法有BIRCH主要是在數據體量很大的時候使用;ROCK優勢在於異常數據抗干擾性強……

關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。

❽ 數據挖掘干貨總結(四)--聚類演算法

本文共計2680字,預計閱讀時長七分鍾

聚類演算法

 

本質

將數據劃分到不同的類里,使相似的數據在同一類里,不相似的數據在不同類里

 

分類演算法用來解決什麼問題

文本聚類、圖像聚類和商品聚類,便於發現規律,以解決數據稀疏問題

聚類演算法基礎知識

1. 層次聚類 vs 非層次聚類

– 不同類之間有無包含關系

2. 硬聚類 vs 軟聚類

– 硬聚類:每個對象只屬於一個類

– 軟聚類:每個對象以某個概率屬於每個類

3. 用向量表示對象

– 每個對象用一個向量表示,可以視為高維空間的一個點

– 所有對象形成數據空間(矩陣)

– 相似度計算:Cosine、點積、質心距離

4. 用矩陣列出對象之間的距離、相似度

5. 用字典保存上述矩陣(節省空間)

    D={(1,1):0,(1,2):2,(1,3):6...(5,5):0}

6. 評價方法

– 內部評價法(Internal Evalution):

• 沒有外部標准,非監督式

• 同類是否相似,跨類是否相異

DB值越小聚類效果越好,反之,越不好

– 外部評價法(External Evalution):

• 准確度(accuracy): (C11+C22) / (C11 + C12 + C21 + C22)

• 精度(Precision): C11 / (C11 + C21 )

• 召回(Recall): C11 / (C11 + C12 )

• F值(F-measure):

β表示對精度P的重視程度,越大越重視,默認設置為1,即變成了F值,F較高時則能說明聚類效果較好。

有哪些聚類演算法


主要分為 層次化聚類演算法 劃分式聚類演算法 基於密度的聚類演算法 基於網格的聚類演算法 基於模型的聚類演算法等

4.1 層次化聚類演算法

又稱樹聚類演算法,透過一種層次架構方式,反復將數據進行分裂或聚合。典型的有BIRCH演算法,CURE演算法,CHAMELEON演算法,Sequence data rough clustering演算法,Between groups average演算法,Furthest neighbor演算法,Neares neighbor演算法等。

凝聚型層次聚類

先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。

演算法流程:

1. 將每個對象看作一類,計算兩兩之間的最小距離;

2. 將距離最小的兩個類合並成一個新類;

3. 重新計算新類與所有類之間的距離;

4. 重復2、3,直到所有類最後合並成一類。

特點:

1. 演算法簡單

2. 層次用於概念聚類(生成概念、文檔層次樹)

3. 聚類對象的兩種表示法都適用

4. 處理大小不同的簇

5. 簇選取步驟在樹狀圖生成之後

4.2 劃分式聚類演算法

預先指定聚類數目或聚類中心,反復迭代逐步降低目標函數誤差值直至收斂,得到最終結果。K-means,K-modes-Huang,K-means-CP,MDS_CLUSTER, Feature weighted fuzzy clustering,CLARANS等

經典K-means:

演算法流程:

1. 隨機地選擇k個對象,每個對象初始地代表了一個簇的中心;

2. 對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;

3. 重新計算每個簇的平均值,更新為新的簇中心;

4. 不斷重復2、3,直到准則函數收斂。

特點:

1.K的選擇

2.中心點的選擇

– 隨機

– 多輪隨機:選擇最小的WCSS

3.優點

– 演算法簡單、有效

– 時間復雜度:O(nkt)

4.缺點

– 不適於處理球面數據

– 密度、大小不同的聚類,受K的限制,難於發現自然的聚類


4.3 基於模型的聚類演算法

為每簇假定了一個模型,尋找數據對給定模型的最佳擬合,同一」類「的數據屬於同一種概率分布,即假設數據是根據潛在的概率分布生成的。主要有基於統計學模型的方法和基於神經網路模型的方法,尤其以基於概率模型的方法居多。一個基於模型的演算法可能通過構建反應數據點空間分布的密度函數來定位聚類。基於模型的聚類試圖優化給定的數據和某些數據模型之間的適應性。

SOM 神經網路演算法

該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。

SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。

演算法流程:

1. 網路初始化,對輸出層每個節點權重賦初值;

2. 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;

3. 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;

4. 提供新樣本、進行訓練;

5. 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。

4.4 基於密度聚類演算法

只要鄰近區域的密度(對象或數據點的數目)超過某個閾值,就繼續聚類,擅於解決不規則形狀的聚類問題,廣泛應用於空間信息處理,SGC,GCHL,DBSCAN演算法、OPTICS演算法、DENCLUE演算法。

DBSCAN:

對於集中區域效果較好,為了發現任意形狀的簇,這類方法將簇看做是數據空間中被低密度區域分割開的稠密對象區域;一種基於高密度連通區域的基於密度的聚類方法,該演算法將具有足夠高密度的區域劃分為簇,並在具有雜訊的空間數據中發現任意形狀的簇。

4.5 基於網格的聚類演算法

    基於網格的方法把對象空間量化為有限數目的單元,形成一個網格結構。所有的聚類操作都在這個網格結構(即量化空間)上進行。這種方法的主要優點是它的處理 速度很快,其處理速度獨立於數據對象的數目,只與量化空間中每一維的單元數目有關。但這種演算法效率的提高是以聚類結果的精確性為代價的。經常與基於密度的演算法結合使用。代表演算法有STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法等。 

❾ 聚類演算法的演算法分類

很難對聚類方法提出一個簡潔的分類,因為這些類別可能重疊,從而使得一種方法具有幾類的特徵,盡管如此,對於各種不同的聚類方法提供一個相對有組織的描述依然是有用的,為聚類分析計算方法主要有如下幾種: 劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:
(1) 每一個分組至少包含一個數據紀錄;
(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);
對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。
大部分劃分方法是基於距離的。給定要構建的分區數k,劃分方法首先創建一個初始化劃分。然後,它採用一種迭代的重定位技術,通過把對象從一個組移動到另一個組來進行劃分。一個好的劃分的一般准備是:同一個簇中的對象盡可能相互接近或相關,而不同的簇中的對象盡可能遠離或不同。還有許多評判劃分質量的其他准則。傳統的劃分方法可以擴展到子空間聚類,而不是搜索整個數據空間。當存在很多屬性並且數據稀疏時,這是有用的。為了達到全局最優,基於劃分的聚類可能需要窮舉所有可能的劃分,計算量極大。實際上,大多數應用都採用了流行的啟發式方法,如k-均值和k-中心演算法,漸近的提高聚類質量,逼近局部最優解。這些啟發式聚類方法很適合發現中小規模的資料庫中小規模的資料庫中的球狀簇。為了發現具有復雜形狀的簇和對超大型數據集進行聚類,需要進一步擴展基於劃分的方法。
使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法; 層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。
例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
層次聚類方法可以是基於距離的或基於密度或連通性的。層次聚類方法的一些擴展也考慮了子空間聚類。層次方法的缺陷在於,一旦一個步驟(合並或分裂)完成,它就不能被撤銷。這個嚴格規定是有用的,因為不用擔心不同選擇的組合數目,它將產生較小的計算開銷。然而這種技術不能更正錯誤的決定。已經提出了一些提高層次聚類質量的方法。
代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等; 基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
這個方法的指導思想就是,只要一個區域中的點的密度大過某個閾值,就把它加到與之相近的聚類中去。
代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等; 基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。
代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法; 基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。
通常有兩種嘗試方向:統計的方案和神經網路的方案。

❿ K-Means 聚類演算法

問題導入

    假如有這樣一種情況,在一天你想去某個城市旅遊,這個城市裡你想去的有70個地方,現在你只有每一個地方的地址,這個地址列表很長,有70個位置。事先肯定要做好攻略,你要把一些比較接近的地方放在一起組成一組,這樣就可以安排交通工具抵達這些組的「某個地址」,然後步行到每個組內的地址。那麼,如何確定這些組,如何確定這些組的「某個地址」?答案就是聚類。而本文所提供的k-means聚類分析方法就可以用於解決這類問題。

一,聚類思想

        所謂聚類演算法是指將一堆沒有標簽的數據自動劃分成幾類的方法,屬於無監督學習方法,這個方法要保證同一類的數據有相似的特徵,如下圖:

        根據樣本之間的距離或者說相似性,把越相似,差異越小的樣本聚成一類(簇),最後形成多個簇,使同一個簇內部的樣本相似度高,不同簇之間差異性高。

二,K-Means聚類分析演算法

        K-Means是一種基於自下而上的聚類分析方法,基本概念就是空間中有N個點,初始選擇K個點作為中心聚類點,將N個點分別與K個點計算距離,選擇自己最近的點作為自己的中心點,不斷地更新中心聚集點。

相關概念:

        K值:要得到的簇的個數

        質心:每個簇的均值向量,即向量各維取品軍即可

        距離度量:常用歐幾里得距離和餘弦相似度(先標准化)

        兩點之間的距離:

演算法流程:

        1    首先確定一個K值,即我們希望將數據集經過聚類得到 K個集合;

        2    從數據集中隨機選擇K個數據點作為質心;

        3    對數據集中每一個點,計算其與每個質心的距離(如歐式距離),離哪個質心近,就劃分到哪個質心所屬的集合

        4    把所有數據歸好集合,一共有K個集合,然後重新計算每個集合的質心;

        5    如果新計算出來的質心和原來的質心之間的距離小於某一個設置的閾值(表示重新計算的質心的位置變化不大,趨於穩定,或者說收斂),我們可以認為聚類已經達到期望的結果,演算法終止。

        6    如果新質心和原質心距離變化大,需要迭代3-5步驟

K-means實現過程

K-means 聚類演算法是一種非監督學習演算法,被用於非標簽數據(data without defined categories or groups)。該演算法使用迭代細化來產生最終結果。演算法輸入的是集群的數量 K 和數據集。數據集是每個數據點的一組功能。

演算法從 Κ 質心的初始估計開始,其可以隨機生成或從數據集中隨機選擇 。然後演算法在下面兩個步驟之間迭代:

1.數據分配:

每個質心定義一個集群。在此步驟中,基於平方歐氏距離將每個數據點分配到其最近的質心。更正式一點, ci 屬於質心集合 C ,然後每個數據點 x 基於下面的公式被分配到一個集群中。

其中 dist(·)是標准(L2)歐氏距離。讓指向第 i 個集群質心的數據點集合定為 Si 。

2. 質心更新:

在此步驟中,重新計算質心。這是通過獲取分配給該質心集群的所有數據點的平均值來完成的。公式如下:

K-means 演算法在步驟 1 和步驟 2 之間迭代,直到滿足停止條件(即,沒有數據點改變集群,距離的總和最小化,或者達到一些最大迭代次數)。

K 值的選擇

上述演算法找到特定預選 K 值和數據集標簽。為了找到數據中的集群數,用戶需要針對一系列 K 值運行 K-means 聚類演算法並比較結果。通常,沒有用於確定 K 的精確值的方法,但是可以使用以下技術獲得准確的估計。

Elbow point 拐點方法

通常用於比較不同 K 值的結果的度量之一是數據點與其聚類質心之間的平均距離。由於增加集群的數量將總是減少到數據點的距離,因此當 K 與數據點的數量相同時,增加 K 將總是減小該度量,達到零的極值。因此,該指標不能用作唯一目標。相反,繪制了作為 K 到質心的平均距離的函數,並且可以使用減小率急劇變化的「拐點」來粗略地確定 K 。

DBI(Davies-Bouldin Index)

DBI 是一種評估度量的聚類演算法的指標,通常用於評估 K-means 演算法中 k 的取值。簡單的理解就是:DBI 是聚類內的距離與聚類外的距離的比值。所以,DBI 的數值越小,表示分散程度越低,聚類效果越好。

還存在許多用於驗證 K 的其他技術,包括交叉驗證,信息標准,信息理論跳躍方法,輪廓方法和 G 均值演算法等等。

三,數學原理

K-Means採用的啟發式很簡單,可以用下面一組圖來形象的描述:

上述a表達了初始的數據集,假設 k=2 。在圖b中,我們隨機選擇了兩個 k 類所對應的類別質點,即圖中的紅色質點和藍色質點,然後分別求樣本中所有點到這兩個質心的距離,並標記每個樣本類別為和該樣本距離最小的質心的類別,如圖c所示,經過計算樣本和紅色質心和藍色質心的距離,我們得到了所有樣本點的第一輪迭代後的類別。此時我們對我們當前標記為紅色和藍色的點分別求其新的質心,如圖d所示,新的紅色質心和藍色質心大熱位置已經發生了變化。圖e和圖f重復了我們在圖c和圖d的過程,即將所有點的類別標記為距離最近的質心的類別並求出新的質心。最終我們得到的兩個類別如圖f.

四,實例

坐標系中有六個點:

1、我們分兩組,令K等於2,我們隨機選擇兩個點:P1和P2

2、通過勾股定理計算剩餘點分別到這兩個點的距離:

3、第一次分組後結果:

        組A:P1

        組B:P2、P3、P4、P5、P6

4、分別計算A組和B組的質心:

        A組質心還是P1=(0,0)

        B組新的質心坐標為:P哥=((1+3+8+9+10)/5,(2+1+8+10+7)/5)=(6.2,5.6)

5、再次計算每個點到質心的距離:

6、第二次分組結果:

        組A:P1、P2、P3

        組B:P4、P5、P6

7、再次計算質心:

        P哥1=(1.33,1) 

        P哥2=(9,8.33)

8、再次計算每個點到質心的距離:

9、第三次分組結果:

        組A:P1、P2、P3

        組B:P4、P5、P6

可以發現,第三次分組結果和第二次分組結果一致,說明已經收斂,聚類結束。

五、K-Means的優缺點

優點:

1、原理比較簡單,實現也是很容易,收斂速度快。

2、當結果簇是密集的,而簇與簇之間區別明顯時, 它的效果較好。

3、主要需要調參的參數僅僅是簇數k。

缺點:

1、K值需要預先給定,很多情況下K值的估計是非常困難的。

2、K-Means演算法對初始選取的質心點是敏感的,不同的隨機種子點得到的聚類結果完全不同 ,對結果影響很大。

3、對噪音和異常點比較的敏感。用來檢測異常值。

4、採用迭代方法, 可能只能得到局部的最優解,而無法得到全局的最優解 。

六、細節問題

1、K值怎麼定?

答:分幾類主要取決於個人的經驗與感覺,通常的做法是多嘗試幾個K值,看分成幾類的結果更好解釋,更符合分析目的等。或者可以把各種K值算出的 E 做比較,取最小的 E 的K值。

2、初始的K個質心怎麼選?

        答:最常用的方法是隨機選,初始質心的選取對最終聚類結果有影響,因此演算法一定要多執行幾次,哪個結果更reasonable,就用哪個結果。      當然也有一些優化的方法,第一種是選擇彼此距離最遠的點,具體來說就是先選第一個點,然後選離第一個點最遠的當第二個點,然後選第三個點,第三個點到第一、第二兩點的距離之和最小,以此類推。第二種是先根據其他聚類演算法(如層次聚類)得到聚類結果,從結果中每個分類選一個點。

3、關於離群值?

        答:離群值就是遠離整體的,非常異常、非常特殊的數據點,在聚類之前應該將這些「極大」「極小」之類的離群數據都去掉,否則會對於聚類的結果有影響。但是,離群值往往自身就很有分析的價值,可以把離群值單獨作為一類來分析。

4、單位要一致!

        答:比如X的單位是米,Y也是米,那麼距離算出來的單位還是米,是有意義的。但是如果X是米,Y是噸,用距離公式計算就會出現「米的平方」加上「噸的平方」再開平方,最後算出的東西沒有數學意義,這就有問題了。

5、標准化

        答:如果數據中X整體都比較小,比如都是1到10之間的數,Y很大,比如都是1000以上的數,那麼,在計算距離的時候Y起到的作用就比X大很多,X對於距離的影響幾乎可以忽略,這也有問題。因此,如果K-Means聚類中選擇歐幾里德距離計算距離,數據集又出現了上面所述的情況,就一定要進行數據的標准化(normalization),即將數據按比例縮放,使之落入一個小的特定區間。

閱讀全文

與聚類演算法幾個特徵相關的資料

熱點內容
安卓手機怎麼用愛思助手傳文件進蘋果手機上 瀏覽:836
安卓怎麼下載60秒生存 瀏覽:795
外向式文件夾 瀏覽:227
dospdf 瀏覽:423
怎麼修改騰訊雲伺服器ip 瀏覽:379
pdftoeps 瀏覽:485
為什麼鴻蒙那麼像安卓 瀏覽:729
安卓手機怎麼拍自媒體視頻 瀏覽:179
單片機各個中斷的初始化 瀏覽:716
python怎麼集合元素 瀏覽:472
python逐條解讀 瀏覽:824
基於單片機的濕度控制 瀏覽:491
ios如何使用安卓的帳號 瀏覽:876
程序員公園采訪 瀏覽:804
程序員實戰教程要多長時間 瀏覽:967
企業數據加密技巧 瀏覽:127
租雲伺服器開發 瀏覽:806
程序員告白媽媽不同意 瀏覽:329
攻城掠地怎麼查看伺服器 瀏覽:594
android開機黑屏 瀏覽:570