導航:首頁 > 源碼編譯 > cuda編譯ptx

cuda編譯ptx

發布時間:2022-09-18 03:48:44

⑴ cuda程序編譯方面,各位都有哪些方法和經驗

首先創建一個soTest的文件夾,裡面有兩個文件deviceQuery.cpp, t.cpp。 12345678deviceQuery.cpp的代碼可以參考CUDASDK t.cpp的源代碼如下: #include int cudev(int argc, char** argv);int main(int argc, char ** argv){ cudev(argc,argv); return 0;}然後在當前目錄下輸下命令

⑵ CUDA和OpenCL有什麼區別

1)開發者友好程度。CUDA在這方面顯然受更多開發者青睞。原因在於其統一的開發套件(CUDA Toolkit, NVIDIA GPU Computing SDK以及NSight等等)、非常豐富的庫(cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP, Thrust)以及NVCC(NVIDIA的CUDA編譯器)所具備的PTX(一種SSA中間表示,為不同的NVIDIA GPU設備提供一套統一的靜態ISA)代碼生成、離線編譯等更成熟的編譯器特性。相比之下,使用OpenCL進行開發,只有AMD對OpenCL的驅動相對成熟。
2)跨平台性和通用性。這一點上OpenCL佔有很大優勢(這也是很多National Laboratory使用OpenCL進行科學計算的最主要原因)。OpenCL支持包括ATI,NVIDIA,Intel,ARM在內的多類處理器,並能支持運行在CPU的並行代碼,同時還獨有Task-Parallel Execution Mode,能夠更好的支持Heterogeneous Computing。這一點是僅僅支持數據級並行並僅能在NVIDIA眾核處理器上運行的CUDA無法做到的。

⑶ CUDA Toolkit到底起什麼作用

分離cpu和gpu代碼,並編譯cuda代碼為ptx

⑷ CUDA和OpenCL有什麼區別

從很多方面來看,CUDA和OpenCL的關系都和DirectX與OpenGL的關系很相像。如同DirectX和OpenGL一樣,CUDA和OpenCL中,前者是配備完整工具包、針對單一供應商(NVIDIA)的成熟的開發平台,後者是一個開放的標准。
雖然兩者抱著相同的目標:通用並行計算。但是CUDA僅僅能夠在NVIDIA的GPU硬體上運行,而OpenCL的目標是面向任何一種Massively Parallel Processor,期望能夠對不同種類的硬體給出一個相同的編程模型。由於這一根本區別,二者在很多方面都存在不同:

1)開發者友好程度。CUDA在這方面顯然受更多開發者青睞。原因在於其統一的開發套件(CUDA Toolkit, NVIDIA GPU Computing SDK以及NSight等等)、非常豐富的庫(cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP, Thrust)以及NVCC(NVIDIA的CUDA編譯器)所具備的PTX(一種SSA中間表示,為不同的NVIDIA GPU設備提供一套統一的靜態ISA)代碼生成、離線編譯等更成熟的編譯器特性。相比之下,使用OpenCL進行開發,只有AMD對OpenCL的驅動相對成熟。

2)跨平台性和通用性。這一點上OpenCL佔有很大優勢(這也是很多National Laboratory使用OpenCL進行科學計算的最主要原因)。OpenCL支持包括ATI,NVIDIA,Intel,ARM在內的多類處理器,並能支持運行在CPU的並行代碼,同時還獨有Task-Parallel Execution Mode,能夠更好的支持Heterogeneous Computing。這一點是僅僅支持數據級並行並僅能在NVIDIA眾核處理器上運行的CUDA無法做到的。

3)市場佔有率。作為一個開放標准,缺少背後公司的推動,OpenCL顯然沒有占據通用並行計算的主流市場。NVIDIA則憑借CUDA在科學計算、生物、金融等領域的推廣牢牢把握著主流市場。再次想到OpenGL和DirectX的對比,不難發現公司推廣的高效和非盈利機構/標准委員會的低效(抑或謹慎,想想C++0x)。

很多開發者都認為,由於目前獨立顯卡市場的萎縮、新一代處理器架構(AMD的Graphics Core Next (GCN)、Intel的Sandy Bridge以及Ivy Bridge)以及新的SIMD編程模型(Intel的ISPC等)的出現,未來的通用並行計算市場會有很多不確定因素,CUDA和OpenCL都不是終點,我期待未來會有更好的並行編程模型的出現(當然也包括CUDA和OpenCL,如果它們能夠持續發展下去)。

⑸ cuda11.1有補丁包嗎

有的。
CUDAToolkit11.1帶來了新的PTX編譯器靜態庫、並行線程執行(PTX)ISA的7.1版本、對Fedora32和Debian10.3的支持、新的統一編程模型、稀疏紋理的硬體加速、不同CUDA流的多線程發射、CUDAGraphs改進、以及其它諸多方面的增強。

⑹ CUDA編譯出錯,求助各位大大,感激

那個錯誤不用管(語法沒有錯誤,是編譯環境按C++的語法提示報錯) 運行出錯可能是計算能力設置不匹配,屬性 -> 配置屬性 -> CUDA C/C++ -> Device -> Code Generation,假設你的卡計算能力1.3,則設置為compute_13,sm_13,默認的可能不對
你好,經我試驗過的,一個簡單的辦法:打開出現warning的文件,Ctrl+A全選,然後在文件菜單:file->Advanced save options,在彈出的選項中選擇新的編碼方式為:UNICODE- codepage 1200 ,點確定後重新編譯。

⑺ CUDA和OpenCL有什麼區別

從很多方面來看,CUDA和OpenCL的關系都和DirectX與OpenGL的關系很相像。如同DirectX和OpenGL一樣,CUDA和OpenCL中,前者是配備完整工具包、針對單一供應商(NVIDIA)的成熟的開發平台,後者是一個開放的標准。

雖然兩者抱著相同的目標:通用並行計算。但是CUDA僅僅能夠在NVIDIA的GPU硬體上運行,而OpenCL的目標是面向任何一種Massively
Parallel Processor,期望能夠對不同種類的硬體給出一個相同的編程模型。由於這一根本區別,二者在很多方面都存在不同:

1)開發者友好程度。CUDA在這方面顯然受更多開發者青睞。原因在於其統一的開發套件(CUDA Toolkit, NVIDIA GPU
Computing SDK以及NSight等等)、非常豐富的庫(cuFFT, cuBLAS, cuSPARSE, cuRAND, NPP,
Thrust)以及NVCC(NVIDIA的CUDA編譯器)所具備的PTX(一種SSA中間表示,為不同的NVIDIA
GPU設備提供一套統一的靜態ISA)代碼生成、離線編譯等更成熟的編譯器特性。相比之下,使用OpenCL進行開發,只有AMD對OpenCL的驅動相對成熟。

2)跨平台性和通用性。這一點上OpenCL佔有很大優勢(這也是很多National
Laboratory使用OpenCL進行科學計算的最主要原因)。OpenCL支持包括ATI,NVIDIA,Intel,ARM在內的多類處理器,並能支持運行在CPU的並行代碼,同時還獨有Task-Parallel
Execution Mode,能夠更好的支持Heterogeneous
Computing。這一點是僅僅支持數據級並行並僅能在NVIDIA眾核處理器上運行的CUDA無法做到的。

3)市場佔有率。作為一個開放標准,缺少背後公司的推動,OpenCL顯然沒有占據通用並行計算的主流市場。NVIDIA則憑借CUDA在科學計算、生物、金融等領域的推廣牢牢把握著主流市場。再次想到OpenGL和DirectX的對比,不難發現公司推廣的高效和非盈利機構/標准委員會的低效(抑或謹慎,想想C++0x)。

很多開發者都認為,由於目前獨立顯卡市場的萎縮、新一代處理器架構(AMD的Graphics Core Next (GCN)、Intel的Sandy
Bridge以及Ivy
Bridge)以及新的SIMD編程模型(Intel的ISPC等)的出現,未來的通用並行計算市場會有很多不確定因素,CUDA和OpenCL都不是終點,我期待未來會有更好的並行編程模型的出現(當然也包括CUDA和OpenCL,如果它們能夠持續發展下去)。

閱讀全文

與cuda編譯ptx相關的資料

熱點內容
web應用安全pdf 瀏覽:47
linuxintel網卡驅動下載 瀏覽:217
資源解壓後怎麼刪除 瀏覽:868
編程之美15種演算法 瀏覽:147
java的圖形用戶界面設計 瀏覽:769
算數游戲源碼 瀏覽:999
壓縮機工作聲音判斷 瀏覽:985
事業單位程序員 瀏覽:506
易語言取相似顏色源碼 瀏覽:773
pyodbclinux 瀏覽:585
vivo為什麼把伺服器沉到深海 瀏覽:460
程序員能為電商做什麼 瀏覽:401
騰訊直充qq號加密碼 瀏覽:140
qt搭建msvc編譯器環境 瀏覽:338
單片機晶振壞了會不會工作不穩定 瀏覽:770
天天影迷APP顯示連接伺服器失敗怎麼回事 瀏覽:961
鋼鐵命令同盟第七關怎麼過 瀏覽:7
android底部控制項彈出 瀏覽:43
為程序員而自豪 瀏覽:583
可以進行c語言編譯的文件名 瀏覽:384