導航:首頁 > 源碼編譯 > 非對稱焦慮演算法有哪些

非對稱焦慮演算法有哪些

發布時間:2022-10-04 04:47:06

1. 非對稱加密演算法有哪些

RSA:RSA 是一種目前應用非常廣泛、歷史也比較悠久的非對稱秘鑰加密技術,在1977年被麻省理工學院的羅納德·李維斯特(Ron Rivest)、阿迪·薩莫爾(Adi Shamir)和倫納德·阿德曼(Leonard Adleman)三位科學家提出,由於難於破解,RSA 是目前應用最廣泛的數字加密和簽名技術,比如國內的支付寶就是通過RSA演算法來進行簽名驗證。它的安全程度取決於秘鑰的長度,目前主流可選秘鑰長度為 1024位、2048位、4096位等,理論上秘鑰越長越難於破解,按照維基網路上的說法,小於等於256位的秘鑰,在一台個人電腦上花幾個小時就能被破解,512位的秘鑰和768位的秘鑰也分別在1999年和2009年被成功破解,雖然目前還沒有公開資料證實有人能夠成功破解1024位的秘鑰,但顯然距離這個節點也並不遙遠,所以目前業界推薦使用 2048 位或以上的秘鑰,不過目前看 2048 位的秘鑰已經足夠安全了,支付寶的官方文檔上推薦也是2048位,當然更長的秘鑰更安全,但也意味著會產生更大的性能開銷。

DSA:既 Digital Signature Algorithm,數字簽名演算法,他是由美國國家標准與技術研究所(NIST)與1991年提出。和 RSA 不同的是 DSA 僅能用於數字簽名,不能進行數據加密解密,其安全性和RSA相當,但其性能要比RSA快。

ECDSA:Elliptic Curve Digital Signature Algorithm,橢圓曲線簽名演算法,是ECC(Elliptic curve cryptography,橢圓曲線密碼學)和 DSA 的結合,橢圓曲線在密碼學中的使用是在1985年由Neal Koblitz和Victor Miller分別獨立提出的,相比於RSA演算法,ECC 可以使用更小的秘鑰,更高的效率,提供更高的安全保障,據稱256位的ECC秘鑰的安全性等同於3072位的RSA秘鑰,和普通DSA相比,ECDSA在計算秘鑰的過程中,部分因子使用了橢圓曲線演算法。

2. 非對稱加密的主要演算法有哪些

非對稱加密(公鑰加密):指加密和解密使用不同密鑰的加密演算法,也稱為公私鑰加密。假設兩個用戶要加密交換數據,雙方交換公鑰,使用時一方用對方的公鑰加密,另一方即可用自己的私鑰解密。如果企業中有n個用戶,企業需要生成n對密鑰,並分發n個公鑰。假設A用B的公鑰加密消息,用A的私鑰簽名,B接到消息後,首先用A的公鑰驗證簽名,確認後用自己的私鑰解密消息。由於公鑰是可以公開的,用戶只要保管好自己的私鑰即可,因此加密密鑰的分發將變得 十分簡單。同時,由於每個用戶的私鑰是唯一的,其他用戶除了可以通過信息發送者的公鑰來驗證信息的來源是否真實,還可以通過數字簽名確保發送者無法否認曾發送過該信息。

3. 非對稱加密演算法有哪些

RSA、Elgamal、背包演算法、Rabin、D-H、ECC橢圓曲線加密演算法。
非對稱加密(公鑰加密):指加密和解密使用不同密鑰的加密演算法,也稱為公私鑰加密。假設兩個用戶要加密交換數據,雙方交換公鑰,使用時一方用對方的公鑰加密,另一方即可用自己的私鑰解密。如果企業中有n個用戶,企業需要生成n對密鑰,並分發n個公鑰。假設A用B的公鑰加密消息,用A的私鑰簽名,B接到消息後,首先用A的公鑰驗證簽名,確認後用自己的私鑰解密消息。由於公鑰是可以公開的,用戶只要保管好自己的私鑰即可,因此加密密鑰的分發將變得十分簡單。同時,由於每個用戶的私鑰是唯一的,其他用戶除了可以通過信息發送者的公鑰來驗證信息的來源是否真實,還可以通過數字簽名確保發送者無法否認曾發送過該信息。

4. 非對稱加密演算法有哪些,安全性能對比

常見的非對稱加密演算法有:RSA、ECC(移動設備用)、Diffie-Hellman、El Gamal、DSA(數字簽名用)


Hash演算法
Hash演算法特別的地方在於它是一種單向演算法,用戶可以通過Hash演算法對目標信息生成一段特定長度的唯一的Hash值,卻不能通過這個Hash值重新獲得目標信息。因此Hash演算法常用在不可還原的密碼存儲、信息完整性校驗等。


常見的Hash演算法有MD2、MD4、MD5、HAVAL、SHA
加密演算法的效能通常可以按照演算法本身的復雜程度、密鑰長度(密鑰越長越安全)、加解密速度等來衡量。上述的演算法中,除了DES密鑰長度不夠、MD2速度較慢已逐漸被淘汰外,其他演算法仍在目前的加密系統產品中使用。

5. 非對稱加密演算法

如果要給世界上所有演算法按重要程度排個序,那我覺得「公鑰加密演算法」一定是排在最前邊的,因為它是現代計算機通信安全的基石,保證了加密數據的安全。

01 對稱加密演算法

在非對稱加密出現以前,普遍使用的是對稱加密演算法。所謂對稱加密,就是加密和解密是相反的操作,對數據進行解密,只要按加密的方式反向操作一遍就可以獲得對應的原始數據了,舉一個簡單的例子,如果要對字元串"abc"進行加密,先獲取它們的ANSCII碼為:97 98 99;密鑰為+2,加密後的數據就是:99 100 101,將密文數據發送出去。接收方收到數據後對數據進行解密,每個數據減2,就得到了原文。當然這只是一個非常簡單的例子,真實的對稱加密演算法會做得非常復雜,但這已經能夠說明問題了。

這樣的加密方法有什麼缺點呢?首先缺點一:密鑰傳遞困難;想想看如果兩個人,分別是Bob和Alice,Bob要給Alice發消息,那Bob就要把密鑰通過某種方式告訴Alice,有什麼可靠的途徑呢?打電話、發郵件、寫信...等等方式好像都不靠譜,都有被竊取的風險,也只有兩人見面後當面交流這一種方式了;缺點二:密鑰數量會隨著通信人數的增加而急劇增加,密鑰管理將會是一個非常困難的事情。

02 非對稱加密演算法

1976年,兩位美國計算機學家,提出了Diffie-Hellman密鑰交換演算法。這個演算法的提出了一種嶄新的構思,可以在不直接傳遞密鑰的情況下,完成解密。這個演算法啟發了其他科學家,讓人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應的關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式就是「非對稱加密演算法」。

演算法大致過程是這樣的:

(1)乙方 生成兩把密鑰(公鑰和私鑰)。公鑰是公開的,任何人都可以獲得,私鑰則是保密的。

(2)甲方獲取乙方的公鑰,然後用它對信息加密。

(3)乙方得到加密後的信息,用私鑰解密。

如果公鑰加密的信息只有私鑰解得開,那麼只要私鑰不泄漏,通信就是安全的。

03 RSA非對稱加密演算法

1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。

從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。這種演算法非常可靠,密鑰越長,它就越難破解。根據已經披露的文獻,目前被破解的最長RSA密鑰是768個二進制位。也就是說,長度超過768位的密鑰,還無法破解(至少沒人公開宣布)。因此可以認為,1024位的RSA密鑰基本安全,2048位的密鑰極其安全。

公鑰加密 -> 私鑰解密

只有私鑰持有方可以正確解密,保證通信安全

私鑰加密 -> 公鑰解密

所有人都可以正確解密,信息一定是公鑰所對應的私鑰持有者發出的,可以做簽名

04 質數的前置知識

RSA的安全性是由大數的質因數分解保證的。下面是一些質數的性質:

1、任意兩個質數構成素質關系,比如:11和17;

2、一個數是質數,另一個數只要不是前者的倍數,兩者就構成素質關系,比如3和10;

3、如果兩個數之中,較大的那個是質數,則兩者構成互質關系,比如97和57;

4、1和任意一個自然數都是互質關系,比如1和99;

5、p是大於1的整數,則p和p-1構成互質關系,比如57和56;

6、p是大於1的奇數,則p和p-2構成互質關系,比如17和15

05 RSA密鑰生成步驟

舉個「栗子「,假如通信雙方為Alice和Bob,Alice要怎麼生成公鑰和私鑰呢?

St ep 1:隨機選擇兩個不相等的質數p和q;

Alice選擇了3和11。(實際情況中,選擇的越大,就越難破解)

S tep 2 :計算p和q的乘積n;

n = 3*11 = 33,將33轉化為二進制:100001,這個時候密鑰長度就是6位。

Step 3 :計算n的歐拉函數φ(n);

因為n可以寫為兩個質數相乘的形式,歐拉函數對於可以寫成兩個質數形式有簡單計算方式

φ(n) = (p-1)(q-1)

Step 4 :隨機選擇一個整數e,條件是1< e < φ(n),且e與φ(n) 互質;

愛麗絲就在1到20之間,隨機選擇了3

Step 5 :計算e對於φ(n)的模反元素d

所謂模反元素,就是指有一個整數d,可以使得ed被φ(n)除的余數為1

Step 6 :將n和e封裝成公鑰,n和d封裝成私鑰;

在上面的例子中,n=33,e=3,d=7,所以公鑰就是 (33,3),私鑰就是(33, 7)。

密鑰生成步驟中,一共出現了六個數字,分別為:

素質的兩個數p和q,乘積n,歐拉函數φ(n),隨機質數e,模反元素d

這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的,可以刪除。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。

那麼,有無可能在已知n和e的情況下,推導出d?

(1)ed 1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有將n因數分解,才能算出p和q。

結論是如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。

BUT!

大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。

維基網路這樣寫道:

"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。

假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有較短的RSA密鑰才可能被暴力破解。到現在為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。

只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"

06 RSA加密和解密過程

1、加密要用公鑰(n,e)

假設鮑勃要向愛麗絲發送加密信息m,他就要用愛麗絲的公鑰 (n,e) 對m進行加密。

所謂"加密",就是算出下式的c:

愛麗絲的公鑰是 (33, 3),鮑勃的m假設是5,那麼可以算出下面的等式:

於是,c等於26,鮑勃就把26發給了愛麗絲。

2、解密要用私鑰(n,d)

愛麗絲拿到鮑勃發來的26以後,就用自己的私鑰(33, 7) 進行解密。下面的等式一定成立(至於為什麼一定成立,證明過程比較復雜,略):

也就是說,c的d次方除以n的余數為m。現在,c等於26,私鑰是(33, 7),那麼,愛麗絲算出:

因此,愛麗絲知道了鮑勃加密前的原文就是5。

至此,加密和解密的整個過程全部完成。整個過程可以看到,加密和解密使用不用的密鑰,且不用擔心密鑰傳遞過程中的泄密問題,這一點上與對稱加密有很大的不同。由於非對稱加密要進行的計算步驟復雜,所以通常情況下,是兩種演算法混合使用的。

07 一些其它的

在Part 5的第五步,要求一定要解出二元一次方程的一對正整數解,如果不存在正整數解,這該怎麼辦?

擴展歐幾里得演算法給出了解答:

對於不完全為 0 的非負整數 a,b,gcd(a,b)表示 a,b 的最大公約數,必然存在整數對 x,y ,使得 gcd(a,b)=ax+by;

第五步其實等價於:ed - kφ(n) = 1, e與φ(n)又互質,形式上完全與擴展歐幾里得演算法的一致,所以一定有整數解存在。

Reference:

http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html

6. 非對稱加密演算法是什麼

非對稱加密(公鑰加密):指加密和解密使用不同密鑰的加密演算法,也稱為公私鑰加密。假設兩個用戶要加密交換數據,雙方交換公鑰,使用時一方用對方的公鑰加密,另一方即可用自己的私鑰解密。如果企業中有n個用戶,企業需要生成n對密鑰,並分發n個公鑰。假設A用B的公鑰加密消息,用A的私鑰簽名,B接到消息後,首先用A的公鑰驗證簽名,確認後用自己的私鑰解密消息。由於公鑰是可以公開的,用戶只要保管好自己的私鑰即可,因此加密密鑰的分發將變得 十分簡單。同時,由於每個用戶的私鑰是唯一的,其他用戶除了可以通過信息發送者的公鑰來驗證信息的來源是否真實,還可以通過數字簽名確保發送者無法否認曾發送過該信息。

鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站 」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。

7. 加密基礎知識二 非對稱加密RSA演算法和對稱加密

上述過程中,出現了公鑰(3233,17)和私鑰(3233,2753),這兩組數字是怎麼找出來的呢?參考 RSA演算法原理(二)
首字母縮寫說明:E是加密(Encryption)D是解密(Decryption)N是數字(Number)。

1.隨機選擇兩個不相等的質數p和q。
alice選擇了61和53。(實際應用中,這兩個質數越大,就越難破解。)

2.計算p和q的乘積n。
n = 61×53 = 3233
n的長度就是密鑰長度。3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。實際應用中,RSA密鑰一般是1024位,重要場合則為2048位。

3.計算n的歐拉函數φ(n)。稱作L
根據公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等於60×52,即3120。

4.隨機選擇一個整數e,也就是公鑰當中用來加密的那個數字
條件是1< e < φ(n),且e與φ(n) 互質。
alice就在1到3120之間,隨機選擇了17。(實際應用中,常常選擇65537。)

5.計算e對於φ(n)的模反元素d。也就是密鑰當中用來解密的那個數字
所謂"模反元素"就是指有一個整數d,可以使得ed被φ(n)除的余數為1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1

6.將n和e封裝成公鑰,n和d封裝成私鑰。
在alice的例子中,n=3233,e=17,d=2753,所以公鑰就是 (3233,17),私鑰就是(3233, 2753)。

上述故事中,blob為了偷偷地傳輸移動位數6,使用了公鑰做加密,即6^17 mode 3233 = 824。alice收到824之後,進行解密,即824^2753 mod 3233 = 6。也就是說,alice成功收到了blob使用的移動位數。

再來復習一下整個流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要滿足以下兩個條件:1<E<144,E和144互質)
D = 29(D要滿足兩個條件,1<D<144,D mode 144 = 1)
假設某個需要傳遞123,則加密後:123^5 mode 323 = 225
接收者收到225後,進行解密,225^ 29 mode 323 = 123

回顧上面的密鑰生成步驟,一共出現六個數字:
p
q
n
L即φ(n)
e
d
這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。那麼,有無可能在已知n和e的情況下,推導出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有將n因數分解,才能算出p和q。
結論:如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。
可是,大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。維基網路這樣寫道:"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有短的RSA密鑰才可能被暴力破解。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"

然而,雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何。此外,RSA的缺點還有:
A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。
B)分組長度太大,為保證安全性,n 至少也要 600bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。因此, 使用RSA只能加密少量數據,大量的數據加密還要靠對稱密碼演算法

加密和解密是自古就有技術了。經常看到偵探電影的橋段,勇敢又機智的主角,拿著一長串毫無意義的數字苦惱,忽然靈光一閃,翻出一本厚書,將第一個數字對應頁碼數,第二個數字對應行數,第三個數字對應那一行的某個詞。數字變成了一串非常有意義的話:
Eat the beancurd with the peanut. Taste like the ham.

這種加密方法是將原來的某種信息按照某個規律打亂。某種打亂的方式就叫做密鑰(cipher code)。發出信息的人根據密鑰來給信息加密,而接收信息的人利用相同的密鑰,來給信息解密。 就好像一個帶鎖的盒子。發送信息的人將信息放到盒子里,用鑰匙鎖上。而接受信息的人則用相同的鑰匙打開。加密和解密用的是同一個密鑰,這種加密稱為對稱加密(symmetric encryption)。

如果一對一的話,那麼兩人需要交換一個密鑰。一對多的話,比如總部和多個特工的通信,依然可以使用同一套密鑰。 但這種情況下,對手偷到一個密鑰的話,就知道所有交流的信息了。 二戰中盟軍的情報戰成果,很多都來自於破獲這種對稱加密的密鑰。

為了更安全,總部需要給每個特工都設計一個不同的密鑰。如果是FBI這樣龐大的機構,恐怕很難維護這么多的密鑰。在現代社會,每個人的信用卡信息都需要加密。一一設計密鑰的話,銀行怕是要跪了。

對稱加密的薄弱之處在於給了太多人的鑰匙。如果只給特工鎖,而總部保有鑰匙,那就容易了。特工將信息用鎖鎖到盒子里,誰也打不開,除非到總部用唯一的一把鑰匙打開。只是這樣的話,特工每次出門都要帶上許多鎖,太容易被識破身份了。總部老大想了想,乾脆就把造鎖的技術公開了。特工,或者任何其它人,可以就地取材,按照圖紙造鎖,但無法根據圖紙造出鑰匙。鑰匙只有總部的那一把。

上面的關鍵是鎖和鑰匙工藝不同。知道了鎖,並不能知道鑰匙。這樣,銀行可以將「造鎖」的方法公布給所有用戶。 每個用戶可以用鎖來加密自己的信用卡信息。即使被別人竊聽到,也不用擔心:只有銀行才有鑰匙呢!這樣一種加密演算法叫做非對稱加密(asymmetric encryption)。非對稱加密的經典演算法是RSA演算法。它來自於數論與計算機計數的奇妙結合。

1976年,兩位美國計算機學家Whitfield Diffie 和 Martin Hellman,提出了一種嶄新構思,可以在不直接傳遞密鑰的情況下,完成解密。這被稱為"Diffie-Hellman密鑰交換演算法"。這個演算法啟發了其他科學家。人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式被稱為"非對稱加密演算法"。

1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。

1.能「撞」上的保險箱(非對稱/公鑰加密體制,Asymmetric / Public Key Encryption)

數據加密解密和門鎖很像。最開始的時候,人們只想到了那種只能用鑰匙「鎖」數據的鎖。如果在自己的電腦上自己加密數據,當然可以用最開始這種門鎖的形式啦,方便快捷,簡單易用有木有。

但是我們現在是通信時代啊,雙方都想做安全的通信怎麼辦呢?如果也用這種方法,通信就好像互相發送密碼保險箱一樣…而且雙方必須都有鑰匙才能進行加密和解密。也就是說,兩個人都拿著保險箱的鑰匙,你把數據放進去,用鑰匙鎖上發給我。我用同樣的鑰匙把保險箱打開,再把我的數據鎖進保險箱,發送給你。

這樣看起來好像沒什麼問題。但是,這裡面 最大的問題是:我們兩個怎麼弄到同一個保險箱的同一個鑰匙呢? 好像僅有的辦法就是我們兩個一起去買個保險箱,然後一人拿一把鑰匙,以後就用這個保險箱了。可是,現代通信社會,絕大多數情況下別說一起去買保險箱了,連見個面都難,這怎麼辦啊?

於是,人們想到了「撞門」的方法。我這有個可以「撞上」的保險箱,你那裡自己也買一個這樣的保險箱。通信最開始,我把保險箱打開,就這么開著把保險箱發給你。你把數據放進去以後,把保險箱「撞」上發給我。撞上以後,除了我以外,誰都打不開保險箱了。這就是RSA了,公開的保險箱就是公鑰,但是我有私鑰,我才能打開。

2.數字簽名
這種鎖看起來好像很不錯,但是鎖在運輸的過程中有這么一個嚴重的問題:你怎麼確定你收到的開著的保險箱就是我發來的呢?對於一個聰明人,他完全可以這么干:
(a)裝作運輸工人。我現在把我開著的保險箱運給對方。運輸工人自己也弄這么一個保險箱,運輸的時候把保險箱換成他做的。
(b)對方收到保險箱後,沒法知道這個保險箱是我最初發過去的,還是運輸工人替換的。對方把數據放進去,把保險箱撞上。
(c)運輸工人往回運的時候,用自己的鑰匙打開自己的保險箱,把數據拿走。然後復印也好,偽造也好,弄出一份數據,把這份數據放進我的保險箱,撞上,然後發給我。
從我的角度,從對方的角度,都會覺得這數據傳輸過程沒問題。但是,運輸工人成功拿到了數據,整個過程還是不安全的,大概的過程是這樣:

這怎麼辦啊?這個問題的本質原因是,人們沒辦法獲知,保險箱到底是「我」做的,還是運輸工人做的。那乾脆,我們都別做保險箱了,讓權威機構做保險箱,然後在每個保險箱上用特殊的工具刻上一個編號。對方收到保險箱的時候,在權威機構的「公告欄」上查一下編號,要是和保險箱上的編號一樣,我就知道這個保險箱是「我」的,就安心把數據放進去。大概過程是這樣的:

如何做出刻上編號,而且編號沒法修改的保險箱呢?這涉及到了公鑰體制中的另一個問題:數字簽名。
要知道,刻字這種事情吧,誰都能幹,所以想做出只能自己刻字,還沒法讓別人修改的保險箱確實有點難度。那麼怎麼辦呢?這其實困擾了人們很長的時間。直到有一天,人們發現:我們不一定非要在保險箱上刻規規矩矩的字,我們乾脆在保險箱上刻手寫名字好了。而且,刻字有點麻煩,乾脆我們在上面弄張紙,讓人直接在上面寫,簡單不費事。具體做法是,我們在保險箱上嵌進去一張紙,然後每個出產的保險箱都讓權威機構的CEO簽上自己的名字。然後,CEO把自己的簽名公開在權威機構的「公告欄」上面。比如這個CEO就叫「學酥」,那麼整個流程差不多是這個樣子:

這個方法的本質原理是,每個人都能夠通過筆跡看出保險箱上的字是不是學酥CEO簽的。但是呢,這個字體是學酥CEO唯一的字體。別人很難模仿。如果模仿我們就能自己分辨出來了。要是實在分辨不出來呢,我們就請一個筆跡專家來分辨。這不是很好嘛。這個在密碼學上就是數字簽名。

上面這個簽字的方法雖然好,但是還有一個比較蛋疼的問題。因為簽字的樣子是公開的,一個聰明人可以把公開的簽字影印一份,自己造個保險箱,然後把這個影印的字也嵌進去。這樣一來,這個聰明人也可以造一個相同簽字的保險箱了。解決這個問題一個非常簡單的方法就是在看保險箱上的簽名時,不光看字體本身,還要看字體是不是和公開的字體完全一樣。要是完全一樣,就可以考慮這個簽名可能是影印出來的。甚至,還要考察字體是不是和其他保險櫃上的字體一模一樣。因為聰明人為了欺騙大家,可能不影印公開的簽名,而影印其他保險箱上的簽名。這種解決方法雖然簡單,但是驗證簽名的時候麻煩了一些。麻煩的地方在於我不僅需要對比保險箱上的簽名是否與公開的筆跡一樣,還需要對比得到的簽名是否與公開的筆跡完全一樣,乃至是否和所有發布的保險箱上的簽名完全一樣。有沒有什麼更好的方法呢?

當然有,人們想到了一個比較好的方法。那就是,學酥CEO簽字的時候吧,不光把名字簽上,還得帶上簽字得日期,或者帶上這個保險箱的編號。這樣一來,每一個保險箱上的簽字就唯一了,這個簽字是學酥CEO的簽名+學酥CEO寫上的時間或者編號。這樣一來,就算有人偽造,也只能偽造用過的保險箱。這個問題就徹底解決了。這個過程大概是這么個樣子:

3 造價問題(密鑰封裝機制,Key Encapsulation Mechanism)
解決了上面的各種問題,我們要考慮考慮成本了… 這種能「撞」門的保險箱雖然好,但是這種鎖造價一般來說要比普通的鎖要高,而且鎖生產時間也會變長。在密碼學中,對於同樣「結實」的鎖,能「撞」門的鎖的造價一般來說是普通鎖的上千倍。同時,能「撞」門的鎖一般來說只能安裝在小的保險櫃裡面。畢竟,這么復雜的鎖,裝起來很費事啊!而普通鎖安裝在多大的保險櫃上面都可以呢。如果兩個人想傳輸大量數據的話,用一個大的保險櫃比用一堆小的保險櫃慢慢傳要好的多呀。怎麼解決這個問題呢?人們又想出了一個非常棒的方法:我們把兩種鎖結合起來。能「撞」上的保險櫃裡面放一個普通鎖的鑰匙。然後造一個用普通的保險櫃來鎖大量的數據。這樣一來,我們相當於用能「撞」上的保險櫃發一個鑰匙過去。對方收到兩個保險櫃後,先用自己的鑰匙把小保險櫃打開,取出鑰匙。然後在用這個鑰匙開大的保險櫃。這樣做更棒的一個地方在於,既然對方得到了一個鑰匙,後續再通信的時候,我們就不再需要能「撞」上的保險櫃了啊,在以後一定時間內就用普通保險櫃就好了,方便快捷嘛。

以下參考 數字簽名、數字證書、SSL、https是什麼關系?
4.數字簽名(Digital Signature)
數據在瀏覽器和伺服器之間傳輸時,有可能在傳輸過程中被冒充的盜賊把內容替換了,那麼如何保證數據是真實伺服器發送的而不被調包呢,同時如何保證傳輸的數據沒有被人篡改呢,要解決這兩個問題就必須用到數字簽名,數字簽名就如同日常生活的中的簽名一樣,一旦在合同書上落下了你的大名,從法律意義上就確定是你本人簽的字兒,這是任何人都沒法仿造的,因為這是你專有的手跡,任何人是造不出來的。那麼在計算機中的數字簽名怎麼回事呢?數字簽名就是用於驗證傳輸的內容是不是真實伺服器發送的數據,發送的數據有沒有被篡改過,它就干這兩件事,是非對稱加密的一種應用場景。不過他是反過來用私鑰來加密,通過與之配對的公鑰來解密。
第一步:服務端把報文經過Hash處理後生成摘要信息Digest,摘要信息使用私鑰private-key加密之後就生成簽名,伺服器把簽名連同報文一起發送給客戶端。
第二步:客戶端接收到數據後,把簽名提取出來用public-key解密,如果能正常的解密出來Digest2,那麼就能確認是對方發的。
第三步:客戶端把報文Text提取出來做同樣的Hash處理,得到的摘要信息Digest1,再與之前解密出來的Digist2對比,如果兩者相等,就表示內容沒有被篡改,否則內容就是被人改過了。因為只要文本內容哪怕有任何一點點改動都會Hash出一個完全不一樣的摘要信息出來。

5.數字證書(Certificate Authority)
數字證書簡稱CA,它由權威機構給某網站頒發的一種認可憑證,這個憑證是被大家(瀏覽器)所認可的,為什麼需要用數字證書呢,難道有了數字簽名還不夠安全嗎?有這樣一種情況,就是瀏覽器無法確定所有的真實伺服器是不是真的是真實的,舉一個簡單的例子:A廠家給你們家安裝鎖,同時把鑰匙也交給你,只要鑰匙能打開鎖,你就可以確定鑰匙和鎖是配對的,如果有人把鑰匙換了或者把鎖換了,你是打不開門的,你就知道肯定被竊取了,但是如果有人把鎖和鑰匙替換成另一套表面看起來差不多的,但質量差很多的,雖然鑰匙和鎖配套,但是你卻不能確定這是否真的是A廠家給你的,那麼這時候,你可以找質檢部門來檢驗一下,這套鎖是不是真的來自於A廠家,質檢部門是權威機構,他說的話是可以被公眾認可的(呵呵)。
同樣的, 因為如果有人(張三)用自己的公鑰把真實伺服器發送給瀏覽器的公鑰替換了,於是張三用自己的私鑰執行相同的步驟對文本Hash、數字簽名,最後得到的結果都沒什麼問題,但事實上瀏覽器看到的東西卻不是真實伺服器給的,而是被張三從里到外(公鑰到私鑰)換了一通。那麼如何保證你現在使用的公鑰就是真實伺服器發給你的呢?我們就用數字證書來解決這個問題。數字證書一般由數字證書認證機構(Certificate Authority)頒發,證書裡麵包含了真實伺服器的公鑰和網站的一些其他信息,數字證書機構用自己的私鑰加密後發給瀏覽器,瀏覽器使用數字證書機構的公鑰解密後得到真實伺服器的公鑰。這個過程是建立在被大家所認可的證書機構之上得到的公鑰,所以這是一種安全的方式。

常見的對稱加密演算法有DES、3DES、AES、RC5、RC6。非對稱加密演算法應用非常廣泛,如SSH,
HTTPS, TLS,電子證書,電子簽名,電子身份證等等。
參考 DES/3DES/AES區別

8. 非對稱加密是使用什麼進行加密

非對稱加密演算法需要兩個密鑰:公開密鑰(publickey:簡稱公鑰)和私有密鑰(privatekey:簡稱私鑰)。
公鑰與私鑰是一對,如果用公鑰對數據進行加密,只有用對應的私鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。

9. 非對稱加密的代表例子有哪些

非對稱加密主要演算法:RSA、Elgamal、背包演算法、Rabin、D-H、ECC(橢圓曲線加密演算法)。
使用最廣泛的是RSA演算法,Elgamal是另一種常用的非對稱加密演算法。
經典的非對稱加密演算法如RSA演算法等安全性都相當高.
非對稱加密的典型應用是數字簽名。

10. 常見的非對稱加密演算法包括

包括rsa加密和橢圓加密演算法。

閱讀全文

與非對稱焦慮演算法有哪些相關的資料

熱點內容
程序員培訓機構發的朋友圈真實性 瀏覽:737
天乾地支簡單演算法 瀏覽:297
下載個壓縮文件 瀏覽:298
普通人電腦關機vs程序員關機 瀏覽:625
米酷建站源碼 瀏覽:113
氫氣app怎麼搜搭配 瀏覽:615
pdf綠盟 瀏覽:502
固態硬碟編譯器重建 瀏覽:389
怎樣編輯硬碟文件夾 瀏覽:658
安卓系統如何打開電腦軟體 瀏覽:570
android監聽事件處理 瀏覽:748
h3c伺服器怎麼看功率 瀏覽:122
前端錄制文件如何上傳伺服器 瀏覽:540
雅黑pdf 瀏覽:460
python使用領域 瀏覽:882
買蘭博基尼用什麼app 瀏覽:139
android關閉後台運行 瀏覽:507
python輸出路徑為超鏈接 瀏覽:535
caxa為什麼沒有加密鎖 瀏覽:794
伺服器怎麼設置才能用IP訪問 瀏覽:667