導航:首頁 > 源碼編譯 > 群體智能優化演算法python

群體智能優化演算法python

發布時間:2022-10-19 08:25:30

1. 仿生智能優化演算法(如何用英語翻譯下)謝謝

Biological modelling intelligence optimization algorithm <dnt> </dnt> each indivial has the experience and the wisdom intelligent body in the biological modelling intelligence optimization algorithm, between the indivial has the interaction mechanism, forms the formidable community wisdom through the interaction to solve the complex problem. The biological modelling intelligence optimization optimization algorithm is one kind of probability searching algorithm essentially, it does not need the question the gradient information, has following is different with the traditional optimization algorithm characteristic:①In the community interaction's indivial is distributional, does not have the direct central main body, not because the indivial indivial will present the breakdown to affect the community to the question solution, will have the strong robustness;②Each indivial can only the sensation partial information, indivial ability or follows the rule to be simple, therefore the community intelligence realizes is simple, is convenient;③The system uses in the expenses which corresponds being few, easy to expand;④From the organization sense, namely the community displays the complex behavior is displays the high intelligence alternately through the simple indivial. Biological modelling intelligence optimization algorithm's these characteristics to overcome difficulties which the optimization design domain faced to provide the powerful support.
<dnt> </dnt>Second, a biological modelling intelligence optimization algorithm common ground analyzes [6] <dnt> the </dnt> several kind of biological modelling intelligence optimization algorithm is simulates the nature living system, total dependence organism own instinct, to optimize its survival condition through unconsciousness optimization behavior to adapt an environment kind of new optimized method, thus has many similar characteristics in the structure and the behavior: 1) is a kind of indefinite algorithm, this kind of uncertainty has manifested the nature physiological mechanism, is follows its randomness to come, when solves certain specific questions must surpass the definite method; 2) is a kind of probability algorithm, its main step includes the random factors, can have more opportunities to gain the globally optimal solution; 3) does not rely on the optimal process the optimized question's strict mathematics nature as well as the objective function and the constraints precise mathematics description; 4) is one kind based on community's intelligent optimization algorithm; 5) has the concealment parallelism, can obtain the great income by the few computations; 6) has appears suddenly the nature, its general objective's completion is in the indivial evolution process appears suddenly in the community; 7) has the evolution, its indivial in complex, stochastic, time-variable environment, through enhances its compatibility unceasingly from the study; 8) has robustness, under the different condition and the environment, manifests the formidable compatibility and the validity. Certainly, because in the nature living system's multiplicity and the complexity, these algorithms also displayed the huge difference. But difference existence, also happen to discuss these biological modelling intelligence optimization algorithm the essential attribute, then obtains the biological modelling intelligence algorithm the unified frame pattern, designed a performance better algorithm to provide the rich material.Second, two biological modelling intelligence optimization algorithm unification frame pattern [7] <dnt> the </dnt> biological modelling intelligence optimization algorithm in aspects and so on structure, research content and method and movement pattern manifested the big similarity, has provided the possibility for the establishment biological modelling intelligence optimization algorithm's unified frame pattern.
<dnt> </dnt> forms the community of the indivial, rests on the specific evolution rule, the iteration proces the renewal community (for example genetic algorithm, ant group algorithm) or the indivial position (for example grain of subgroup algorithm, artificial school of fish algorithm, mix leapfrog algorithm), the optimal solution evolves unceasingly along with the community or the migration appears suddenly, this frame pattern may describe is:
<dnt> </dnt>1) establishes various parameters, proces the initial community and calculates the adaptation value;
<dnt> </dnt>2) acts according to the hypothesis rule, the renewal community or its position, has group of solutions, the computation indivial adaptation value;
<dnt> </dnt>3) obtains the community by the indivial adaptation value comparison the optimal-adaptive value and makes the record;
<dnt> </dnt>4) judges the terminal condition whether to satisfy, if satisfies, conclusion iteration; Otherwise, transfers 2).
<dnt> </dnt> in this frame pattern, the one who decides the algorithm performance is community's renewal rule, these hypothesis rule had decided the indivial behavior standards, have the direct biology foundation, constituted the algorithm to be different with other similar unique essences and the bright characteristic.
<dnt> the </dnt> biological modelling intelligence optimization algorithm sets up together the call-board generally, with records the most superior indivial the historical condition. In algorithm execution each iteration, each indivial comparison own condition and call-board condition, and when own condition is superior with it replacement, causes the call-board to record the historical most superior condition throughout. After algorithm iteration conclusion, may read out the optimal solution from the call-board condition and gain the related information

2. 人工智慧和python有什麼關系

提到人工智慧就一定會提到Python,有的初學者甚至認為人工智慧和Python是劃等號的,其實Python是一種計算機程序設計語言。是一種動態的、面向對象的腳本語言,開始時是用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越來越多被用於獨立的、大型項目的開發。而人工智慧通俗講就是人為的通過嵌入式技術把程序寫入機器中使其實現智能化。顯然人工智慧和Python是兩個不同的概念。人工智慧和Python的淵源在於。就像我們統計數據或選擇用excel製作表格時,因為在需要用到加減乘除或者、函數等時,只需要套用公司就可以。因為SUM、AVERAGE等這樣的函數運行的背後,是C++/C#等語言已經編寫好了代碼,所以Excel只是工具和展現形式並不是它做計算。同理在學習人工智慧時Python只是用來操作深度學習框架的工具,實際負責運算的主要模塊並不依靠Python,真正起作用的是也是一大堆復雜的C++
/ CUDA程序。
深度學習人工智慧時,自己計算太復雜,還要寫C++代碼操作,這時程序員就想要不搞一套類似復雜的Excel配置表,直接搭建神經網路、填參數、導入數據,一點按鈕就直接開始訓練模型、得出結果。這個方法簡單實用可是神經網路搭建起來太復雜,需要填寫的參數太多,各種五花八門的選項也很難做成直觀的圖形工具。只能用一個類似Python的相對好用的語言,通過簡化的程序代碼來搭建神經網路、填寫參數、導入數據,並調用執行函數進行訓練。通過這種語言來描述模型、傳遞參數、轉換好輸入數據,然後扔到復雜的深度學習框架裡面去計算。那麼為什麼會選擇Python?科學家們很早就喜歡用Python實驗演算法,也善於使用numpy做科學計算,用pyplot畫數據圖。恰好Google內部用Python也非常多,所以採用Python也是必然的。除Python外,實際上TensorFlow框架還支持JavaScript、c++、Java、GO、等語言。按說人工智慧演算法用這些也可以。但是官方說了,除Python之外的語言不一定承諾API穩定性。所以人工智慧和Python就密不可分了。單說人工智慧的核心演算法,那是是完全依賴於C/C++的,因為是計算密集型,需要非常精細的優化,還需要GPU、專用硬體之類的介面,這些都只有C/C++能做到。所以某種意義上其實C/C++才是人工智慧領域最重要的語言。Python是這些庫的API
binding,要開發一個其他語言到C/C++的跨語言介面,Python是最容易的,比其他語言的ffi門檻要低不少,CPython的C
API是雙向融合的,可以直接對外暴露封裝過的Python對象,還可以允許用戶通過繼承這些自定義對象來引入新特性,甚至可以從C代碼當中再調用Python的函數。Python一直都是科學計算和數據分析的重要工具,Python是這些庫的API
binding,要開發一個其他語言到C/C++的跨語言介面,Python是最容易的,比其他語言的ffi門檻要低不少,CPython的C
API是雙向融合的,可以直接對外暴露封裝過的Python對象,還可以允許用戶通過繼承這些自定義對象來引入新特性,甚至可以從C代碼當中再調用Python的函數。都說時勢造英雄,也可以說是人工智慧和Python互相之間成就者對方,人工智慧演算法促進Python的發展,而Python也讓演算法更加簡單。

3. 群體智能演算法在什麼時候容易陷入局部最優

一般最優化演算法只能求局部最優值,很難求出全局最優值。
許多演算法當找到局部最優點後,就不能再繼續尋找了,這叫陷入局部極值。

4. 優化演算法是什麼

智能優化演算法是一種啟發式優化演算法,包括遺傳演算法、蟻群演算法、禁忌搜索演算法、模擬退火演算法、粒子群演算法等。·智能優化演算法一般是針對具體問題設計相關的演算法,理論要求弱,技術性強。一般,我們會把智能演算法與最優化演算法進行比較,相比之下,智能演算法速度快,應用性強。

群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。

各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。

(4)群體智能優化演算法python擴展閱讀:

優化演算法有很多,關鍵是針對不同的優化問題,例如可行解變數的取值(連續還是離散)、目標函數和約束條件的復雜程度(線性還是非線性)等,應用不同的演算法。 對於連續和線性等較簡單的問題,可以選擇一些經典演算法,例如梯度、Hessian 矩陣、拉格朗日乘數、單純形法、梯度下降法等;而對於更復雜的問題,則可考慮用一些智能優化演算法。

5. 學習多目標優化需要掌握哪些python知識

多目標優化

目標優化問題一般地就是指通過一定的優化演算法獲得目標函數的最優化解。當優化的目標函數為一個時稱之為單目標優化(Single-
objective Optimization Problem,
SOP)。當優化的目標函數有兩個或兩個以上時稱為多目標優化(Multi-objective Optimization Problem,
MOP)。不同於單目標優化的解為有限解,多目標優化的解通常是一組均衡解。

多目標優化演算法歸結起來有傳統優化演算法和智能優化演算法兩大類。
1. 傳統優化演算法包括加權法、約束法和線性規劃法等,實質上就是將多目標函數轉化為單目標函數,通過採用單目標優化的方法達到對多目標函數的求解。
2. 智能優化演算法包括進化演算法(Evolutionary Algorithm, 簡稱EA)、粒子群演算法(Particle Swarm Optimization, PSO)等。

Pareto最優解:

若x*∈C*,且在C中不存在比x更優越的解x,則稱x*是多目標最優化模型式的Pareto最優解,又稱為有效解。
一般來說,多目標優化問題並不存在一個最優解,所有可能的解都稱為非劣解,也稱為Pareto解。傳統優化技術一般每次能得到Pareo解集中的一個,而
用智能演算法來求解,可以得到更多的Pareto解,這些解構成了一個最優解集,稱為Pareto最優解。它是由那些任一個目標函數值的提高都必須以犧牲其
他目標函數值為代價的解組成的集合,稱為Pareto最優域,簡稱Pareto集。

Pareto有效(最優)解非劣解集是指由這樣一些解組成的集合:與集合之外的任何解相比它們至少有一個目標函數比集合之外的解好。

求解多目標優化問題最有名的就是NSGA-II了,是多目標遺傳演算法,但其對解的選擇過程可以用在其他優化演算法上,例如粒子群,蜂群等等。這里簡單介紹一下NSGA-II的選擇演算法。主要包含三個部分:
1. 快速非支配排序
要先講一下支配的概念,對於解X1和X2,如果X1對應的所有目標函數都不比X2大(最小問題),且存在一個目標值比X2小,則X2被X1支配。
快速非支配排序是一個循環分級過程:首先找出群體中的非支配解集,記為第一非支配層,irank=1(irank是個體i的非支配值),將其從群體中除去,繼續尋找群體中的非支配解集,然後irank=2。
2. 個體擁擠距離
為了使計算結果在目標空間比較均勻的分布,維持種群多樣性,對每個個體計算擁擠距離,選擇擁擠距離大的個體,擁擠距離的定義為:
L[i]d=L[i]d+(L[i+1]m−L[i−1]m)/(fmaxm−fminm)
L[i+1]m是第i+1個個體的第m目標函數值,fmaxm 和 fminm是集合中第m個目標函數的最大和最小值。
3. 精英策略選擇
精英策略就是保留父代中的優良個體直接進入子代,防止獲得的Pareto最優解丟失。將第t次產生的子代種群和父代種群合並,然後對合並後的新種群進行非支配排序,然後按照非支配順序添加到規模為N的種群中作為新的父代。

6. 粒子群優化演算法和多模態優化演算法有什麼區別

摘 要:,粒子群演算法據自己的速度來決定搜索過程,只有最優的粒子把信息給予其他的粒子,整個搜索更新過程是跟隨當前最優解的過程,所有的粒子還可以更快的收斂於最優解。由於微粒群演算法簡單,容易實現,與其它求解約束優化問題的方法相比較,具有一定的優勢。實驗結果表明,對於無約束的非線性求解,粒子群演算法表現出較好的收斂性和健壯性。
關鍵詞:粒子群演算法;函數優化;極值尋優
0 引言
非線性方程的求根問題是多年來數學家努力解決的問題之一。長期以來,人們已找出多種用於解決方程求根的方法,例如牛頓法、弦割法、拋物線法等。然而,很多傳統的方法僅能運用於相應的小的問題集,推廣性相對較差。對於一個現實世界中的優化問題,必須嘗試很多不同的方法,甚至要發明相應的新的方法來解決,這顯然是不現實的。我們需要另外的方法來克服這樣的困難。
粒子群演算法是一種現代啟發式演算法,具有推廣性強、魯棒性高等特點[1]。該演算法具有群體智能、內在並行性、迭代格式簡單、可快速收斂到最優解所在區域等優點[2]。本文採用粒子群演算法,對函數的極值進行尋優計算,實現了對函數的極值求解。
1 粒子群演算法
1.1 基本原理
粒子群演算法(PSO)是一種基於群體的隨機優化技術,它的思想來源於對鳥群捕食行為的研究與模擬。粒子群演算法與其它基於群體的進化演算法相類似,選用「群體」和「進化」的概念,按照個體的適應度值進行操作,也是一種基於迭代的尋優技術。區別在於,粒子群演算法中沒有交叉變異等進化運算元,而是將每個個體看作搜索空間中的微粒,每個微粒沒有重量和體積,但都有自己的位置向量、速度向量和適應度值。所有微粒以一定的速度飛行於搜索空間中,其中的飛行速度是由個體飛行經驗和群體的飛行經驗動態調整,通過追蹤當前搜索到的最優值來尋找全局最優值。
1.2 參數選擇
粒子群演算法需要修改的參數很少,但對參數的選擇卻十分敏感。El-Gallad A, El-Hawary M, Sallam A, Kalas A[3]主要對演算法中的種群規模、迭代次數和粒子速度的選擇方法進行了詳細分析,利用統計方法對約束優化問題的求解論證了這 3 個參數對演算法性能的影響,並給出了具有一定通用性的3 個參數選擇原則[4]。
種群規模:通常根據待優化問題的復雜程度確定。
最大速度:決定粒子在一次迭代中的最大移動距離,通常設定為不超過粒子的范圍寬度。
加速常數:加速常數c1和c2通常是由經驗值決定的,它代表粒子向pbest和gbest靠攏的加速項的權重。一般取值為:c1=c2=2。
中止條件:達到最大迭代次數或得到最小誤差要求,通常要由具體問題確定。
慣性權重:慣性權重能夠針對待優化問題調整演算法的局部和全局搜索能力。當該值較大時有利於全局搜索,較小時有利於局部搜索。所以通常在演算法開始時設置較大的慣性權重,以便擴大搜索范圍、加快收斂。而隨著迭代次數的增加逐漸減小慣性權重的值,使其進行精確搜索,避免跳過最優解。
1.3 演算法步驟
PSO演算法步驟如下:
Step1:初始化一個規模為 m 的粒子群,設定初始位置和速度。
初始化過程如下:
(1)設定群體規模m;
(2)對任意的i,s,在[-xmax, xmax]內均勻分布,產生初始位置xis;
(3)對任意的i,s,在[-vmax, vmax]內均勻分布,產生速度vis;
(4)對任意的i,設yi=xi,保存個體。
Step2:計算每個粒子的適應度值。
Step3:對每個粒子的適應度值和得到過的最好位置pis的適應度值進行比較,若相對較好,則將其作為當前的最好位置。
Step4:對每個粒子的適應度值和全局得到過的最好位置pgs的適應度值進行比較,若相對較好,則將其作為當前的全局最好位置。
Step5:分別對粒子的所在位置和速度進行更新。
Step6:如果滿足終止條件,則輸出最優解;否則,返回Step2。
1.4 粒子群演算法函數極值求解
粒子群演算法優化是計算機智能領域,除蟻群演算法外的另一種基於群體智能的優化演算法。粒子群演算法是一種群體智能的煙花計算技術。與遺傳演算法相比,粒子群演算法沒有遺傳演算法的選擇(Selection)、交叉(Crossover)、變異(Mutation)等操作,而是通過粒子在解空間追隨最優的粒子進行搜索。
粒子群演算法流程如圖所示:

粒子群為由n個粒子組成的種群X = (X1,X2,X3,…Xn).
第i個粒子表示一個D維向量Xi = (X1,X2,X3,…XD)T.
第i個粒子的速度為Vi = (Vi1,Vi2,Vi3,…ViD)T.
個體極值為Pi = (Pi1,Pi2,Pi3,…PiD)T.
全局極值為Pg = (Pg1,Pg2,Pg3,…PgD)T.
速度更新為,式中,c1和c2為其兩個學習因子的參數值;r1和r2為其兩個隨機值。
位置更新為.
2 粒子群演算法應用舉例
2.1 實驗問題
這是一個無約束函數的極值尋優,對於Ackley函數,
.
其中c1=20,e=2. 71289。
2.2 實驗步驟
對於Ackley函數圖形,選取一個凹峰進行分析,程序運行結果如圖所示。

圖1 Ackley函數圖形
可以看出,選取區間內的Ackley函數圖形只有一個極小值點。因此,對於該段函數進行尋優,不會陷入局部最小。採用粒子群演算法對該函數進行極值尋優。
首先,進行初始化粒子群,編寫的MATLAB代碼如下:
% 初始化種群
for i=1:sizepop
x1 = popmin1 (popmax1-popmin1)*rand;
% 產生隨機個體
x2 = popmin2 (popmax2-popmin2)*rand;
pop(i,1) = x1; % 保存產生的隨機個體
pop(i,2) = x2;
fitness(i) = fun([x1,x2]); % 適應度值
V(i,1) = 0; % 初始化粒子速度
V(i,2) = 0;
end
程序運行後所產生的個體值為:
表1 函數個體值

然後,根據待尋優的目標函數,計算適應度值。待尋優的目標函數為:
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2x(2)^2)/2))-exp((cos(2*pi*x(1)) cos(2*pi*x(2)))/2) 20 2.71289;
根據每一組個體,通過目標函數,得到的適應度值為:

表2 函數適應度值

搜索個體最優極值,即搜索最小的適應度值,我們可利用MATLAB繪圖將所有個體的適應度值繪成plot圖查看相對最小值。

圖3 函數適應度plot圖
從圖中可看出,當個體=20時,得到相對最小值,在程序中,將其保存下來。
之後進行迭代尋優,直到滿足終止條件。
最後,得到的最優值為:

圖4 MATLAB運行得到結果
迭代後得到的運行結果圖如下:

圖5 迭代曲線圖
2.3 實驗結果
通過圖5中可看出,該函數的尋優是收斂的,最優個體和實際情況較吻合。因此,採用粒子群演算法進行函數極值尋優,快速、准確且魯棒性較好。
3 結論
本文闡述了粒子群演算法求解最化問題的過程,實驗結果表明了該演算法對於無約束問題的可行性。與其它的進化演算法相比,粒子群演算法容易理解、編碼簡單、容易實現。但是參數的設置對於該演算法的性能卻有很大的影響,例如控制收斂,避免早熟等。在未來的工作中,將努力於將其它計算智能演算法或其它優化技術應用於粒子群演算法中,以進一步提高粒子群演算法的性能。

7. 智能優化演算法:灰狼優化演算法

@[toc]
摘要:受 灰 狼 群 體 捕 食 行 為 的 啟 發,Mirjalili等[1]於 2014年提出了一種新型群體智能優化演算法:灰狼優化演算法。GWO通過模擬灰狼群體捕食行為,基於狼群群體協作的機制來達到優化的目的。 GWO演算法具有結構簡單、需要調節的參數少,容易實現等特點,其中存在能夠自適應調整的收斂因子以及信息反饋機制,能夠在局部尋優與全局搜索之間實現平衡,因此在對問題的求解精度和收斂速度方面都有良好的性能。

灰狼屬於犬科動物,被認為是頂級的掠食者,它們處於生物圈食物鏈的頂端。灰狼大多喜歡群居,每個群體中平均有5-12隻狼。特別令人感興趣的是,它們具有非常嚴格的社會等級層次制度,如圖1所示。金字塔第一層為種群中的領導者,稱為 α 。在狼群中 α 是具有管理能力的個體,主要負責關於狩獵、睡覺的時間和地方、食物分配等群體中各項決策的事務。金字塔第二層是 α 的智囊團隊,稱為 β 。 β 主要負責協助α 進行決策。當整個狼群的 α 出現空缺時,β 將接替 α 的位置。 β 在狼群中的支配權僅次於 α,它將 α 的命令下達給其他成員,並將其他成員的執行情況反饋給 α 起著橋梁的作用。金字塔第三層是 δ ,δ 聽從 α 和 β 的決策命令,主要負責偵查、放哨、看護等事務。適應度不好的 α 和 β 也會降為 δ 。金字塔最底層是 ω ,主要負責種群內部關系的平衡。

<center>圖1.灰狼的社會等級制度

此外,集體狩獵是灰狼的另一個迷人的社會行為。灰狼的社會等級在群體狩獵過程中發揮著重要的作用,捕食的過程在 α 的帶領下完成。灰狼的狩獵包括以下 3個主要部分:
1)跟蹤、追逐和接近獵物;
2)追捕、包圍和騷擾獵物,直到它停止移動;
3)攻擊獵物

在狩獵過程中,將灰狼圍捕獵物的行為定義如下:

式(1)表示個體與獵物間的距離,式(2)是灰狼的位置更新公式。其中, 是目前的迭代代數, 和 是系數向量, 和 分別是獵物的位置向量和灰狼的位置向量。 和 的計算公式如下:

其中, 是收斂因子,隨著迭代次數從2線性減小到0, 和 的模取[0,1]之間的隨機數。

灰狼能夠識別獵物的位置並包圍它們。當灰狼識別出獵物的位置後,β 和 δ 在 α 的帶領下指導狼群包圍獵物。在優化問題的決策空間中,我們對最佳解決方案(獵物的位置)並不了解。因此,為了模擬灰狼的狩獵行為,我們假設 α ,β 和 δ 更了解獵物的潛在位置。我們保存迄今為止取得的3個最優解決方案,並利用這三者的位置來判斷獵物所在的位置,同時強迫其他灰狼個體(包括 ω )依據最優灰狼個體的位置來更新其位置,逐漸逼近獵物。狼群內個體跟蹤獵物位置的機制如圖2所示。

<center>圖2.GWO 演算法中灰狼位置更新示意圖

灰狼個體跟蹤獵物位置的數學模型描述如下:

其中, 分別表示分別表示 α , β 和 δ 與其他個體間的距離。 分別代表 α , β 和 δ 的當前位置; 是隨機向量, 是當前灰狼的位置。

式(6)分別定義了狼群中 ω 個體朝向 α ,β 和 δ 前進的步長和方向,式(7)定義了 ω 的最終位置。

當獵物停止移動時,灰狼通過攻擊來完成狩獵過程。為了模擬逼近獵物, 的值被逐漸減小,因此 的波動范圍也隨之減小。換句話說,在迭代過程中,當 的值從2線性下降到0時,其對應的 的值也在區間[-a,a]內變化。如圖3a所示,當 的值位於區間內時,灰狼的下一位置可以位於其當前位置和獵物位置之間的任意位置。當 時,狼群向獵物發起攻擊(陷入局部最優)。

灰狼根據 α ,β 和 δ 的位置來搜索獵物。灰狼在尋找獵物時彼此分開,然後聚集在一起攻擊獵物。基於數學建模的散度,可以用 大於1 或小於-1 的隨機值來迫使灰狼與獵物分離,這強調了勘探(探索)並允許 GWO 演算法全局搜索最優解。如圖3b所示, 強迫灰狼與獵物(局部最優)分離,希望找到更合適的獵物(全局最優)。GWO 演算法還有另一個組件 來幫助發現新的解決方案。由式(4)可知, 是[0,2]之間的隨機值。 表示狼所在的位置對獵物影響的隨機權重, 表示影響權重大,反之,表示影響權重小。這有助於 GWO演算法更隨機地表現並支持探索,同時可在優化過程中避免陷入局部最優。另外,與 不同 是非線性減小的。這樣,從最初的迭代到最終的迭代中,它都提供了決策空間中的全局搜索。在演算法陷入了局部最優並且不易跳出時, 的隨機性在避免局部最優方面發揮了非常重要的作用,尤其是在最後需要獲得全局最優解的迭代中。

<center>圖4.演算法流程圖

[1] Seyedali Mirjalili,Seyed Mohammad Mirjalili,Andrew Lewis. Grey Wolf Optimizer[J]. Advances in Engineering Software,2014,69.

[2] 張曉鳳,王秀英.灰狼優化演算法研究綜述[J].計算機科學,2019,46(03):30-38.

https://mianbaoo.com/o/bread/Z5ecmZc=
文獻復現:
文獻復現:基於翻筋斗覓食策略的灰狼優化演算法(DSFGWO)
[1]王正通,程鳳芹,尤文,李雙.基於翻筋斗覓食策略的灰狼優化演算法[J/OL].計算機應用研究:1-5[2021-02-01]. https://doi.org/10.19734/j.issn.1001-3695.2020.04.0102 .

文獻復現:基於透鏡成像學習策略的灰狼優化演算法(LIS-GWO)
[1]龍文,伍鐵斌,唐明珠,徐明,蔡紹洪.基於透鏡成像學習策略的灰狼優化演算法[J].自動化學報,2020,46(10):2148-2164.

文獻復現:一種優化局部搜索能力的灰狼演算法(IGWO)
[1]王習濤.一種優化局部搜索能力的灰狼演算法[J].計算機時代,2020(12):53-55.

文獻復現:基於自適應頭狼的灰狼優化演算法(ALGWO)
[1]郭陽,張濤,胡玉蝶,杜航.基於自適應頭狼的灰狼優化演算法[J].成都大學學報(自然科學版),2020,39(01):60-63+73.

文獻復現:基於自適應正態雲模型的灰狼優化演算法 (CGWO)
[1]張鑄,饒盛華,張仕傑.基於自適應正態雲模型的灰狼優化演算法[J/OL].控制與決策:1-6[2021-02-08]. https://doi.org/10.13195/j.kzyjc.2020.0233 .

文獻復現:改進非線性收斂因子灰狼優化演算法
[1]王正通,尤文,李雙.改進非線性收斂因子灰狼優化演算法[J].長春工業大學學報,2020,41(02):122-127.

文獻復現:一種基於收斂因子改進的灰狼優化演算法
[1]邢燕禎,王東輝.一種基於收斂因子改進的灰狼優化演算法[J].網路新媒體技術,2020,9(03):28-34.

文獻復現:基於萊維飛行和隨機游動策略的灰狼演算法(GWOM )
[1]李陽,李維剛,趙雲濤,劉翱.基於萊維飛行和隨機游動策略的灰狼演算法[J].計算機科學,2020,47(08):291-296.

文獻復現:一種改進的灰狼優化演算法(EGWO)
[1]龍文,蔡紹洪,焦建軍,伍鐵斌.一種改進的灰狼優化演算法[J].電子學報,2019,47(01):169-175.

文獻復現:改進收斂因子和比例權重的灰狼優化演算法(CGWO)
[1]王秋萍,王夢娜,王曉峰.改進收斂因子和比例權重的灰狼優化演算法[J].計算機工程與應用,2019,55(21):60-65+98.

文獻復現:一種改進非線性收斂方式的灰狼優化演算法研究(CGWO)
[1]談發明,趙俊傑,王琪.一種改進非線性收斂方式的灰狼優化演算法研究[J].微電子學與計算機,2019,36(05):89-95.

文獻復現:一種基於Tent 映射的混合灰狼優化的改進演算法(PSOGWO)
[1]滕志軍,呂金玲,郭力文,許媛媛.一種基於Tent映射的混合灰狼優化的改進演算法[J].哈爾濱工業大學學報,2018,50(11):40-49.

文獻復現:基於差分進化與優勝劣汰策略的灰狼優化演算法(IGWO)
[1]朱海波,張勇.基於差分進化與優勝劣汰策略的灰狼優化演算法[J].南京理工大學學報,2018,42(06):678-686.

文獻復現:基於 Iterative 映射和單純形法的改進灰狼優化演算法(SMIGWO)
[1]王夢娜,王秋萍,王曉峰.基於Iterative映射和單純形法的改進灰狼優化演算法[J].計算機應用,2018,38(S2):16-20+54.

文獻復現:一種基於混合策略的灰狼優化演算法(EPDGWO)
[1]牛家彬,王輝.一種基於混合策略的灰狼優化演算法[J].齊齊哈爾大學學報(自然科學版),2018,34(01):16-19+32.

文獻復現:基於隨機收斂因子和差分變異的改進灰狼優化演算法(IGWO)
[1]徐松金,龍文.基於隨機收斂因子和差分變異的改進灰狼優化演算法[J].科學技術與工程,2018,18(23):252-256.

文獻復現:一種基於差分進化和灰狼演算法的混合優化演算法(DEGWO)
[1]金星,邵珠超,王盛慧.一種基於差分進化和灰狼演算法的混合優化演算法[J].科學技術與工程,2017,17(16):266-269.

文獻復現:協調探索和開發能力的改進灰狼優化演算法(IGWO)
[1]龍文,伍鐵斌.協調探索和開發能力的改進灰狼優化演算法[J].控制與決策,2017,32(10):1749-1757.

文獻復現:基於Cat混沌與高斯變異的改進灰狼優化演算法(IGWO)
[1]徐辰華,李成縣,喻昕,黃清寶.基於Cat混沌與高斯變異的改進灰狼優化演算法[J].計算機工程與應用,2017,53(04):1-9+50.

文獻復現:具有自適應搜索策略的灰狼優化演算法(SAGWO)
[1]魏政磊,趙輝,韓邦傑,孫楚,李牧東.具有自適應搜索策略的灰狼優化演算法[J].計算機科學,2017,44(03):259-263.

文獻復現:採用動態權重和概率擾動策略改進的灰狼優化演算法(IGWO)
[1]陳闖,Ryad Chellali,邢尹.採用動態權重和概率擾動策略改進的灰狼優化演算法[J].計算機應用,2017,37(12):3493-3497+3508.

文獻復現:具有自適應調整策略的混沌灰狼優化演算法(CLSGWO)
[1]張悅,孫惠香,魏政磊,韓博.具有自適應調整策略的混沌灰狼優化演算法[J].計算機科學,2017,44(S2):119-122+159.

文獻復現:強化狼群等級制度的灰狼優化演算法(GWOSH)
[1]張新明,塗強,康強,程金鳳.強化狼群等級制度的灰狼優化演算法[J].數據採集與處理,2017,32(05):879-889.

文獻復現:一種新型非線性收斂因子的灰狼優化演算法(NGWO)
[1]王敏,唐明珠.一種新型非線性收斂因子的灰狼優化演算法[J].計算機應用研究,2016,33(12):3648-3653.

文獻復現:重選精英個體的非線性收斂灰狼優化演算法(EGWO)
[1]黎素涵,葉春明.重選精英個體的非線性收斂灰狼優化演算法[J].計算機工程與應用,2021,57(01):62-68.

https://mianbaoo.com/o/bread/aZ2Wl54=

8. 什麼是智能優化演算法

群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。因此,群體智能優化演算法可以建立一個基本的理論框架模式:

Step1:設置參數,初始化種群;

Step2:生成一組解,計算其適應值;

Step3:由個體最有適應著,通過比較得到群體最優適應值;

Step4:判斷終止條件示否滿足?如果滿足,結束迭代;否則,轉向Step2;

各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動步長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。

(8)群體智能優化演算法python擴展閱讀

優化演算法有很多,經典演算法包括:有線性規劃,動態規劃等;改進型局部搜索演算法包括爬山法,最速下降法等,模擬退火、遺傳演算法以及禁忌搜索稱作指導性搜索法。而神經網路,混沌搜索則屬於系統動態演化方法。

優化思想裡面經常提到鄰域函數,它的作用是指出如何由當前解得到一個(組)新解。其具體實現方式要根據具體問題分析來定。

9. 為什麼人工智慧用Python

這屬於一種誤解,人工智慧的核心演算法是完全依賴於C/C++的,因為是計算密集型,需要非常精細的優化,還需要GPU、專用硬體之類的介面,這些都只有C/C++能做到。所以某種意義上其實C/C++才是人工智慧領域最重要的語言。
Python是這些庫的API binding,使用Python是因為CPython的膠水語言特性,要開發一個其他語言到C/C++的跨語言介面,Python是最容易的,比其他語言的ffi門檻要低不少,尤其是使用Cython的時候。其他語言的ffi許多都只能導入C的函數入口點,復雜的數據結構大多隻能手工用byte數組拼起來,如果還需要回調函數輸入那就無計可施了。而CPython的C API是雙向融合的,可以直接對外暴露封裝過的Python對象,還可以允許用戶通過繼承這些自定義對象來引入新特性,甚至可以從C代碼當中再調用Python的函數(當然,也有一定的條件限制)。不過這也是PyPy這樣的JIT解釋器的一個障礙。
而且Python歷史上也一直都是科學計算和數據分析的重要工具,有numpy這樣的底子,因為行業近似所以選擇API binding語言的時候會首選Python,同時復用numpy這樣的基礎庫既減少了開發工作量,也方便從業人員上手。

閱讀全文

與群體智能優化演算法python相關的資料

熱點內容
自己購買雲主伺服器推薦 瀏覽:422
個人所得稅java 瀏覽:761
多餘的伺服器滑道還有什麼用 瀏覽:192
pdf劈開合並 瀏覽:28
不能修改的pdf 瀏覽:752
同城公眾源碼 瀏覽:489
一個伺服器2個埠怎麼映射 瀏覽:298
java字元串ascii碼 瀏覽:79
台灣雲伺服器怎麼租伺服器 瀏覽:475
旅遊手機網站源碼 瀏覽:332
android關聯表 瀏覽:946
安卓導航無聲音怎麼維修 瀏覽:333
app怎麼裝視頻 瀏覽:431
安卓系統下的軟體怎麼移到桌面 瀏覽:96
windows拷貝到linux 瀏覽:772
mdr軟體解壓和別人不一樣 瀏覽:904
單片機串列通信有什麼好處 瀏覽:340
游戲開發程序員書籍 瀏覽:860
pdf中圖片修改 瀏覽:288
匯編編譯後 瀏覽:491