導航:首頁 > 源碼編譯 > 整數優化演算法

整數優化演算法

發布時間:2022-10-20 02:51:36

Ⅰ 傳統優化演算法和現代優化演算法包括哪些.區別是什麼

1. 傳統優化演算法一般是針對結構化的問題,有較為明確的問題和條件描述,如線性規劃,二次規劃,整數規劃,混合規劃,帶約束和不帶約束條件等,即有清晰的結構信息;而智能優化演算法一般針對的是較為普適的問題描述,普遍比較缺乏結構信息。

2. 傳統優化演算法不少都屬於凸優化范疇,有唯一明確的全局最優點;而智能優化演算法針對的絕大多數是多極值問題,如何防止陷入局部最優而盡可能找到全局最優是採納智能優化演算法的根本原因:對於單極值問題,傳統演算法大部分時候已足夠好,而智能演算法沒有任何優勢;對多極值問題,智能優化演算法通過其有效設計可以在跳出局部最優和收斂到一個點之間有個較好的平衡,從而實現找到全局最優點,但有的時候局部最優也是可接受的,所以傳統演算法也有很大應用空間和針對特殊結構的改進可能。

3. 傳統優化演算法一般是確定性演算法,有固定的結構和參數,計算復雜度和收斂性可做理論分析;智能優化演算法大多屬於啟發性演算法,能定性分析卻難定量證明,且大多數演算法基於隨機特性,其收斂性一般是概率意義上的,實際性能不可控,往往收斂速度也比較慢,計算復雜度較高。

Ⅱ c語言演算法優化

【演算法描述】
轉某牛人的解題報告!!!!
這道題在沒看數據規模之前以為是一道簡單的DP,但是數據開到十億,無論在時間還是空間復雜度都過大,所以就要進行優化了。

解一:
簡單方法:預期得分30。簡單動態規劃,f[i]代表青蛙跳到i點時所可能踩到的最少石子數,所以有f[i]=min{f[k]+map[i]}(i-s≤k≤i-t),其中map[i]代表i上是否有石子,有是1,否則0。演算法復雜度O(n^2)。

解二:
改進方法:預期得分100。我們會發現,雖然橋很長,但上面最多隻有100個石子,想到能否用石子DP,而應該是不行的。那能否基於第一種方法?由於石子排布非常的疏,我們還會發現,如果兩個石子相隔甚遠,那他們中間的f[i]大部分將會是同一個數,能否把兩個石子的距離縮短,使之還與原來等效?要是行的話怎麼縮?王乃岩同學考試時做了一個方法能夠過全部數據,用的滾動數組存儲,下面列出了他的程序。我自己也寫了個程序,和他不盡相同:我令L=stone[i]-stone[i-1](stone[i]代表按坐標由小到大順序排列的石塊坐標),當L能夠被t整除時(L%t==0),令k=t;當L不能被t整除時(L%t!=0),令k=L%t。然後令k為k+t,最後判斷如果k>L,那麼map[]數組中stone[i]和stone[i-1]兩石頭的距離就被等效成為L(也就是沒變);如果k<=L,那麼map[]數組中stone[i]和stone[i-1]兩石頭的距離就被等效成為k,可以看出來,這樣處理完,兩石子最大間距為2*t,大大的縮短了數組,再按解一進行DP,就可以通過了。

#include <stdio.h>
#include <string.h>
long stone[101];
int map[100001];
int f[100001];
long L;
int S, T, M;
void quickSort(int l, int r)
{
int i , j;
long temp;
i = l;
j = r;
temp = stone[i];
while (i < j)
{
while (i < j && stone[j] > temp)
j--;
if (i < j)
{
stone[i] = stone[j];
i++;
}
while (i < j && stone[i] < temp)
i++;
if (i < j)
{
stone[j] = stone[i];
j--;
}
}
stone[i] = temp;
if (i - 1 > l) quickSort(l, i - 1);
if (i + 1 < r) quickSort(i + 1, r);
}
int main()
{
int i, j;
long l, k, p = 0, min;
scanf("%ld%d%d%d", &L, &S, &T, &M);
for (i = 1; i <= M; i++)
scanf("%ld", &stone[i]);
memset(map, 0, sizeof(int)*100001);
memset(f, 0, sizeof(int)*100001);
quickSort(1, M);
stone[0] = 0;
p = 0;
for (i = 1; i <= M; i++)
{
l = stone[i] - stone[i - 1];
if (l % T == 0)
k = T;
else
k = l % T;
k = k + T;
if (l < k)
k = l;
p = p + k;
map[p] = 1;
}
for (i = 1; i <= p + T; i++)
{
min = 1000;
for (j = i - T; j <= i - S; j++)
if ( j >= 0 && f[j] < min)
min = f[j];
f[i] = min + map[i];
}
min = 1000;
for (i = p + 1; i <= p + T; i++)
if (f[i] < min)
min = f[i];
printf("%d\n", min);
return 0;
}

Ⅲ 輸入整數N( 1 <= N <= 10 ),生成從1~N所有整數的全排列。

#include <cstdio>
#include <iomanip>
#include <iostream>
using namespace std;

const int maxn =30;

int n, r, ans[maxn];
bool a[maxn];

void print(){
for(int i = 1; i <= r; i ++)
printf("%3d",ans[i]);
printf("\n");
return ;
}
void Search(int t){
if( t > r){
print();
return ;
}else
for(int i = ans[t-1]; i <= n; i ++)if(!a[i]){
a[i] = 1;
ans[t] = i;
Search(t+1);
a[i] = 0;
}
}

int main(){
scanf("%d%d",&n,&r);
ans[0] = 1;
Search(1);
return 0;
}

Ⅳ c語言問題,求優化演算法

試試這個——

void main(void){
int n,a,b,c[15],i,count=0,j;
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&c[i]);
scanf("%d%d",&a,&b);
for(i=a;i%8;i++);
for(;i<=b;i+=8){
for(j=0;j<n;j++)
if(i%c[j]==0)
break;
if(j==n)
count++;
}
printf("%d\n",count);
}

Ⅳ 求素數怎樣優化演算法

1.如果要找出這個范圍內的所有素數,可以使用篩選法,把不是素數的篩掉
從小到大,如果p是素數,則篩去p*p,p*(p+1),.....
2.如果只是做判斷,就用Miller-Rabin測試,基於費馬小定理,對於正整數n,如果存在正整數a,滿足a^(n-1)=1(mod
n),(=應為三行的同餘)
則n為基於a的偽素數,也就基本上是素數拉,只要對隨機的多個a進行測試,如果都成立,就可以認為n是素數拉.

Ⅵ 有人知道怎麼解整數最優化嗎我要用數學軟體(matlab, maple等)解一個多項二次函數整數最優化問題,謝謝

% 下面舉例說明遺傳演算法 %
% 求下列函數的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 將 x 的值用一個10位的二值形式表示為二值問題,一個10位的二值數提供的解析度是每為 (10-0)/(2^10-1)≈0.01 。 %
% 將變數域 [0,10] 離散化為二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一個二值數。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%

% 編程
%-----------------------------------------------
% 2.1初始化(編碼)
% initpop.m函數的功能是實現群體的初始化,popsize表示群體的大小,chromlength表示染色體的長度(二值數的長度),
% 長度大小取決於變數的二進制編碼的長度(在本例中取10位)。
%遺傳演算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand隨機產生每個單元為 {0,1} 行數為popsize,列數為chromlength的矩陣,
% roud對矩陣的每個單元進行圓整。這樣產生的初始種群。
% 2.2 計算目標函數值
% 2.2.1 將二進制數轉化為十進制數(1)
%遺傳演算法子程序
%Name: decodebinary.m
%產生 [2^n 2^(n-1) ... 1] 的行向量,然後求和,將二進制轉化為十進制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列數
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和
% 2.2.2 將二進制編碼轉化為十進制數(2)
% decodechrom.m函數的功能是將染色體(或二進制編碼)轉換為十進制,參數spoint表示待解碼的二進制串的起始位置
% (對於多個變數而言,如有兩個變數,採用20為表示,每個變數10為,則第一個變數從1開始,另一個變數從11開始。本例為1),
% 參數1ength表示所截取的長度(本例為10)。
%遺傳演算法子程序
%Name: decodechrom.m
%將二進制編碼轉換成十進制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
% 2.2.3 計算目標函數值
% calobjvalue.m函數的功能是實現目標函數的計算,其公式採用本文示例模擬,可根據不同優化問題予以修改。
%遺傳演算法子程序
%Name: calobjvalue.m
%實現目標函數的計算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %將pop每行轉化成十進制數
x=temp1*10/1023; %將二值域 中的數轉化為變數域 的數
objvalue=10*sin(5*x)+7*cos(4*x); %計算目標函數值
% 2.3 計算個體的適應值
%遺傳演算法子程序
%Name:calfitvalue.m
%計算個體的適應值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';
% 2.4 選擇復制
% 選擇或復制操作是決定哪些個體可以進入下一代。程序中採用賭輪盤選擇法選擇,這種方法較易實現。
% 根據方程 pi=fi/∑fi=fi/fsum ,選擇步驟:
% 1) 在第 t 代,由(1)式計算 fsum 和 pi
% 2) 產生 {0,1} 的隨機數 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,則第 k 個個體被選中
% 4) 進行 N 次2)、3)操作,得到 N 個個體,成為第 t=t+1 代種群
%遺傳演算法子程序
%Name: selection.m
%選擇復制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求適應值之和
fitvalue=fitvalue/totalfit; %單個個體被選擇的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],則 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %從小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end
% 2.5 交叉
% 交叉(crossover),群體中的每個個體之間都以一定的概率 pc 交叉,即兩個個體從各自字元串的某一位置
% (一般是隨機確定)開始互相交換,這類似生物進化過程中的基因分裂與重組。例如,假設2個父代個體x1,x2為:
% x1=0100110
% x2=1010001
% 從每個個體的第3位開始交叉,交又後得到2個新的子代個體y1,y2分別為:
% y1=0100001
% y2=1010110
% 這樣2個子代個體就分別具有了2個父代個體的某些特徵。利用交又我們有可能由父代個體在子代組合成具有更高適合度的個體。
% 事實上交又是遺傳演算法區別於其它傳統優化方法的主要特點之一。
%遺傳演算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end
% 2.6 變異
% 變異(mutation),基因的突變普遍存在於生物的進化過程中。變異是指父代中的每個個體的每一位都以概率 pm 翻轉,即由「1」變為「0」,
% 或由「0」變為「1」。遺傳演算法的變異特性可以使求解過程隨機地搜索到解可能存在的整個空間,因此可以在一定程度上求得全局最優解。
%遺傳演算法子程序
%Name: mutation.m
%變異
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end
% 2.7 求出群體中最大得適應值及其個體
%遺傳演算法子程序
%Name: best.m
%求出群體中適應值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end
% 2.8 主程序
%遺傳演算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群體大小
chromlength=10; %字元串長度(個體長度)
pc=0.6; %交叉概率
pm=0.001; %變異概率
pop=initpop(popsize,chromlength); %隨機產生初始群體
for i=1:20 %20為迭代次數
[objvalue]=calobjvalue(pop); %計算目標函數
fitvalue=calfitvalue(objvalue); %計算群體中每個個體的適應度
[newpop]=selection(pop,fitvalue); %復制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %變異
[bestindivial,bestfit]=best(pop,fitvalue); %求出群體中適應值最大的個體及其適應值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end
fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off
[z index]=max(y); %計算最大值及其位置
x5=x(index)%計算最大值對應的x值
y=z
【問題】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。
matlab遺傳演算法工具箱函數及實例講解
核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數【輸出參數】
pop--生成的初始種群【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如[\'maxGenTerm\']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如[\'normGeomSelect\']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如[\'arithXover heuristicXover simpleXover\']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如[\'boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation\']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]注意】matlab工具箱函數必須放在工作目錄下【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],\'fitness\');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],\'fitness\',[],initPop,[1e-6 1 1],\'maxGenTerm\',25,\'normGeomSelect\',...
[0.08],[\'arithXover\'],[2],\'nonUnifMutation\',[2 25 3]) %25次遺傳迭代運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)

註:遺傳演算法一般用來取得近似最優解,而不是最優解。遺傳演算法實例2

【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,\'fitness\')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot(\'x+10*sin(5*x)+7*cos(4*x)\',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。

Ⅶ 整數規劃的組合最優化

組合最優化通常都可表述為整數規劃問題。兩者都是在有限個可供選擇的方案中,尋找滿足一定約束的最好方案。有許多典型的問題反映整數規劃的廣泛背景。例如,背袋(或裝載)問題、固定費用問題、和睦探險隊問題(組合學的對集問題)、有效探險隊問題(組合學的覆蓋問題)、旅行推銷員問題, 車輛路徑問題等。因此整數規劃的應用范圍也是極其廣泛的。它不僅在工業和工程設計和科學研究方面有許多應用,而且在計算機設計、系統可靠性、編碼和經濟分析等方面也有新的應用。

閱讀全文

與整數優化演算法相關的資料

熱點內容
自己購買雲主伺服器推薦 瀏覽:421
個人所得稅java 瀏覽:761
多餘的伺服器滑道還有什麼用 瀏覽:191
pdf劈開合並 瀏覽:28
不能修改的pdf 瀏覽:752
同城公眾源碼 瀏覽:489
一個伺服器2個埠怎麼映射 瀏覽:297
java字元串ascii碼 瀏覽:79
台灣雲伺服器怎麼租伺服器 瀏覽:475
旅遊手機網站源碼 瀏覽:332
android關聯表 瀏覽:945
安卓導航無聲音怎麼維修 瀏覽:332
app怎麼裝視頻 瀏覽:430
安卓系統下的軟體怎麼移到桌面 瀏覽:96
windows拷貝到linux 瀏覽:772
mdr軟體解壓和別人不一樣 瀏覽:904
單片機串列通信有什麼好處 瀏覽:340
游戲開發程序員書籍 瀏覽:860
pdf中圖片修改 瀏覽:288
匯編編譯後 瀏覽:491