導航:首頁 > 源碼編譯 > id3演算法特點

id3演算法特點

發布時間:2023-01-29 09:23:40

① 決策樹演算法原理

決策樹是通過一系列規則對數據進行分類的過程。它提供一種在什麼條件下會得到什麼值的類似規則的方法。決策樹分為分類樹和回歸樹兩種,分類樹對離散變數做決策樹,回歸樹對連續變數做決策樹。

如果不考慮效率等,那麼樣本所有特徵的判斷級聯起來終會將某一個樣本分到一個類終止塊上。實際上,樣本所有特徵中有一些特徵在分類時起到決定性作用,決策樹的構造過程就是找到這些具有決定性作用的特徵,根據其決定性程度來構造一個倒立的樹--決定性作用最大的那個特徵作為根節點,然後遞歸找到各分支下子數據集中次大的決定性特徵,直至子數據集中所有數據都屬於同一類。所以,構造決策樹的過程本質上就是根據數據特徵將數據集分類的遞歸過程,我們需要解決的第一個問題就是,當前數據集上哪個特徵在劃分數據分類時起決定性作用。

一棵決策樹的生成過程主要分為以下3個部分:

特徵選擇:特徵選擇是指從訓練數據中眾多的特徵中選擇一個特徵作為當前節點的分裂標准,如何選擇特徵有著很多不同量化評估標准標准,從而衍生出不同的決策樹演算法。

決策樹生成: 根據選擇的特徵評估標准,從上至下遞歸地生成子節點,直到數據集不可分則停止決策樹停止生長。 樹結構來說,遞歸結構是最容易理解的方式。

剪枝:決策樹容易過擬合,一般來需要剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有預剪枝和後剪枝兩種。

劃分數據集的最大原則是:使無序的數據變的有序。如果一個訓練數據中有20個特徵,那麼選取哪個做劃分依據?這就必須採用量化的方法來判斷,量化劃分方法有多重,其中一項就是「資訊理論度量信息分類」。基於資訊理論的決策樹演算法有ID3、CART和C4.5等演算法,其中C4.5和CART兩種演算法從ID3演算法中衍生而來。

CART和C4.5支持數據特徵為連續分布時的處理,主要通過使用二元切分來處理連續型變數,即求一個特定的值-分裂值:特徵值大於分裂值就走左子樹,或者就走右子樹。這個分裂值的選取的原則是使得劃分後的子樹中的「混亂程度」降低,具體到C4.5和CART演算法則有不同的定義方式。

ID3演算法由Ross Quinlan發明,建立在「奧卡姆剃刀」的基礎上:越是小型的決策樹越優於大的決策樹(be simple簡單理論)。ID3演算法中根據資訊理論的信息增益評估和選擇特徵,每次選擇信息增益最大的特徵做判斷模塊。ID3演算法可用於劃分標稱型數據集,沒有剪枝的過程,為了去除過度數據匹配的問題,可通過裁剪合並相鄰的無法產生大量信息增益的葉子節點(例如設置信息增益閥值)。使用信息增益的話其實是有一個缺點,那就是它偏向於具有大量值的屬性--就是說在訓練集中,某個屬性所取的不同值的個數越多,那麼越有可能拿它來作為分裂屬性,而這樣做有時候是沒有意義的,另外ID3不能處理連續分布的數據特徵,於是就有了C4.5演算法。CART演算法也支持連續分布的數據特徵。

C4.5是ID3的一個改進演算法,繼承了ID3演算法的優點。C4.5演算法用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足在樹構造過程中進行剪枝;能夠完成對連續屬性的離散化處理;能夠對不完整數據進行處理。C4.5演算法產生的分類規則易於理解、准確率較高;但效率低,因樹構造過程中,需要對數據集進行多次的順序掃描和排序。也是因為必須多次數據集掃描,C4.5隻適合於能夠駐留於內存的數據集。

CART演算法的全稱是Classification And Regression Tree,採用的是Gini指數(選Gini指數最小的特徵s)作為分裂標准,同時它也是包含後剪枝操作。ID3演算法和C4.5演算法雖然在對訓練樣本集的學習中可以盡可能多地挖掘信息,但其生成的決策樹分支較大,規模較大。為了簡化決策樹的規模,提高生成決策樹的效率,就出現了根據GINI系數來選擇測試屬性的決策樹演算法CART。

決策樹演算法的優點:

(1)便於理解和解釋,樹的結構可以可視化出來

(2)基本不需要預處理,不需要提前歸一化,處理缺失值

(3)使用決策樹預測的代價是O(log2m),m為樣本數

(4)能夠處理數值型數據和分類數據

(5)可以處理多維度輸出的分類問題

(6)可以通過數值統計測試來驗證該模型,這使解釋驗證該模型的可靠性成為可能

(7)即使該模型假設的結果與真實模型所提供的數據有些違反,其表現依舊良好

決策樹演算法的缺點:

(1)決策樹模型容易產生一個過於復雜的模型,這樣的模型對數據的泛化性能會很差。這就是所謂的過擬合.一些策略像剪枝、設置葉節點所需的最小樣本數或設置數的最大深度是避免出現該問題最為有效地方法。

(2)決策樹可能是不穩定的,因為數據中的微小變化可能會導致完全不同的樹生成。這個問題可以通過決策樹的集成來得到緩解。

(3)在多方面性能最優和簡單化概念的要求下,學習一棵最優決策樹通常是一個NP難問題。因此,實際的決策樹學習演算法是基於啟發式演算法,例如在每個節點進行局部最優決策的貪心演算法。這樣的演算法不能保證返回全局最優決策樹。這個問題可以通過集成學習來訓練多棵決策樹來緩解,這多棵決策樹一般通過對特徵和樣本有放回的隨機采樣來生成。

(4)有些概念很難被決策樹學習到,因為決策樹很難清楚的表述這些概念。例如XOR,奇偶或者復用器的問題。

(5)如果某些類在問題中佔主導地位會使得創建的決策樹有偏差。因此,我們建議在擬合前先對數據集進行平衡。

(1)當數據的特徵維度很高而數據量又很少的時候,這樣的數據在構建決策樹的時候往往會過擬合。所以我們要控制樣本數量和特徵的之間正確的比率;

(2)在構建決策樹之前,可以考慮預先執行降維技術(如PCA,ICA或特徵選擇),以使我們生成的樹更有可能找到具有辨別力的特徵;

(3)在訓練一棵樹的時候,可以先設置max_depth=3來將樹可視化出來,以便我們找到樹是怎樣擬合我們數據的感覺,然後在增加我們樹的深度;

(4)樹每增加一層,填充所需的樣本數量是原來的2倍,比如我們設置了最小葉節點的樣本數量,當我們的樹層數增加一層的時候,所需的樣本數量就會翻倍,所以我們要控制好樹的最大深度,防止過擬合;

(5)使用min_samples_split(節點可以切分時擁有的最小樣本數) 和 min_samples_leaf(最小葉節點數)來控制葉節點的樣本數量。這兩個值設置的很小通常意味著我們的樹過擬合了,而設置的很大意味著我們樹預測的精度又會降低。通常設置min_samples_leaf=5;

(6)當樹的類比不平衡的時候,在訓練之前一定要先平很數據集,防止一些類別大的類主宰了決策樹。可以通過采樣的方法將各個類別的樣本數量到大致相等,或者最好是將每個類的樣本權重之和(sample_weight)規范化為相同的值。另請注意,基於權重的預剪枝標准(如min_weight_fraction_leaf)將比不知道樣本權重的標准(如min_samples_leaf)更少偏向主導類別。

(7)如果樣本是帶權重的,使用基於權重的預剪枝標准將更簡單的去優化樹結構,如mn_weight_fraction_leaf,這確保了葉節點至少包含了樣本權值總體總和的一小部分;

(8)在sklearn中所有決策樹使用的數據都是np.float32類型的內部數組。如果訓練數據不是這種格式,則將復制數據集,這樣會浪費計算機資源。

(9)如果輸入矩陣X非常稀疏,建議在調用fit函數和稀疏csr_matrix之前轉換為稀疏csc_matrix,然後再調用predict。 當特徵在大多數樣本中具有零值時,與密集矩陣相比,稀疏矩陣輸入的訓練時間可以快幾個數量級。

② 5.10 決策樹與ID3演算法

https://blog.csdn.net/dorisi_h_n_q/article/details/82787295

決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。決策過程是從根節點開始,測試待分類項中相應的特徵屬性,並按照其值選擇輸出分支,直到到達葉子節點,將葉子節點存放的類別作為決策結果。

決策樹的關鍵步驟是分裂屬性。就是在某節點處按某一特徵屬性的不同劃分構造不同的分支,目標是讓各個分裂子集盡可能地「純」。即讓一個分裂子集中待分類項屬於同一類別。

簡而言之,決策樹的劃分原則就是:將無序的數據變得更加有序

分裂屬性分為三種不同的情況 :

構造決策樹的關鍵性內容是進行屬性選擇度量,屬性選擇度量(找一種計算方式來衡量怎麼劃分更劃算)是一種選擇分裂准則,它決定了拓撲結構及分裂點split_point的選擇。

屬性選擇度量演算法有很多,一般使用自頂向下遞歸分治法,並採用不回溯的貪心策略。這里介紹常用的ID3演算法。

貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,所做出的是在某種意義上的局部最優解。

此概念最早起源於物理學,是用來度量一個熱力學系統的無序程度。
而在信息學裡面,熵是對不確定性的度量。
在1948年,香農引入了信息熵,將其定義為離散隨機事件出現的概率,一個系統越是有序,信息熵就越低,反之一個系統越是混亂,它的信息熵就越高。所以信息熵可以被認為是系統有序化程度的一個度量。

熵定義為信息的期望值,在明晰這個概念之前,我們必須知道信息的定義。如果待分類的事務可能劃分在多個分類之中,則符號x的信息定義為:

在劃分數據集之前之後信息發生的變化稱為信息增益。
知道如何計算信息增益,就可計算每個特徵值劃分數據集獲得的信息增益,獲得信息增益最高的特徵就是最好的選擇。

條件熵 表示在已知隨機變數的條件下隨機變數的不確定性,隨機變數X給定的條件下隨機變數Y的條
件熵(conditional entropy) ,定義X給定條件下Y的條件概率分布的熵對X的數學期望:

根據上面公式,我們假設將訓練集D按屬性A進行劃分,則A對D劃分的期望信息為

則信息增益為如下兩者的差值

ID3演算法就是在每次需要分裂時,計算每個屬性的增益率,然後選擇增益率最大的屬性進行分裂

步驟:1. 對當前樣本集合,計算所有屬性的信息增益;

是最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷的從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。ID3演算法是對CLS演算法的改進,主要是摒棄了屬性選擇的隨機性。

基於ID3演算法的改進,主要包括:使用信息增益比替換了信息增益下降度作為屬性選擇的標准;在決策樹構造的同時進行剪枝操作;避免了樹的過度擬合情況;可以對不完整屬性和連續型數據進行處理;使用k交叉驗證降低了計算復雜度;針對數據構成形式,提升了演算法的普適性。

信息增益值的大小相對於訓練數據集而言的,並沒有絕對意義,在分類問題困難時,也就是說在訓練數據集經驗熵大的時候,信息增益值會偏大,反之信息增益值會偏小,使用信息增益比可以對這個問題進行校正,這是特徵選擇
的另一個標准。
特徵對訓練數據集的信息增益比定義為其信息增益gR( D,A) 與訓練數據集的經驗熵g(D,A)之比 :

gR(D,A) = g(D,A) / H(D)

sklearn的決策樹模型就是一個CART樹。是一種二分遞歸分割技術,把當前樣本劃分為兩個子樣本,使得生成的每個非葉子節點都有兩個分支,因此,CART演算法生成的決策樹是結構簡潔的二叉樹。
分類回歸樹演算法(Classification and Regression Trees,簡稱CART演算法)是一種基於二分遞歸分割技術的演算法。該演算法是將當前的樣本集,分為兩個樣本子集,這樣做就使得每一個非葉子節點最多隻有兩個分支。因此,使用CART
演算法所建立的決策樹是一棵二叉樹,樹的結構簡單,與其它決策樹演算法相比,由該演算法生成的決策樹模型分類規則較少。

CART分類演算法的基本思想是:對訓練樣本集進行遞歸劃分自變數空間,並依次建立決策樹模型,然後採用驗證數據的方法進行樹枝修剪,從而得到一顆符合要求的決策樹分類模型。

CART分類演算法和C4.5演算法一樣既可以處理離散型數據,也可以處理連續型數據。CART分類演算法是根據基尼(gini)系
數來選擇測試屬性,gini系數的值越小,劃分效果越好。設樣本集合為T,則T的gini系數值可由下式計算:

CART演算法優點:除了具有一般決策樹的高准確性、高效性、模式簡單等特點外,還具有一些自身的特點。
如,CART演算法對目標變數和預測變數在概率分布上沒有要求,這樣就避免了因目標變數與預測變數概率分布的不同造成的結果;CART演算法能夠處理空缺值,這樣就避免了因空缺值造成的偏差;CART演算法能夠處理孤立的葉子結點,這樣可以避免因為數據集中與其它數據集具有不同的屬性的數據對進一步分支產生影響;CART演算法使用的是二元分支,能夠充分地運用數據集中的全部數據,進而發現全部樹的結構;比其它模型更容易理解,從模型中得到的規則能獲得非常直觀的解釋。

CART演算法缺點:CART演算法是一種大容量樣本集挖掘演算法,當樣本集比較小時不夠穩定;要求被選擇的屬性只能產生兩個子結點,當類別過多時,錯誤可能增加得比較快。

sklearn.tree.DecisionTreeClassifier

1.安裝graphviz.msi , 一路next即可

ID3演算法就是在每次需要分裂時,計算每個屬性的增益率,然後選擇增益率最大的屬性進行分裂

按照好友密度劃分的信息增益:

按照是否使用真實頭像H劃分的信息增益

**所以,按先按好友密度劃分的信息增益比按真實頭像劃分的大。應先按好友密度劃分。

③ 決策樹(Decision Tree)

通俗來說,決策樹分類的思想類似於找對象。現想像一個女孩的母親要給這個女孩介紹男朋友,於是有了下面的對話:

      女兒:多大年紀了?

      母親:26。

      女兒:長的帥不帥?

      母親:挺帥的。

      女兒:收入高不?

      母親:不算很高,中等情況。

      女兒:是公務員不?

      母親:是,在稅務局上班呢。

      女兒:那好,我去見見。

      這個女孩的決策過程就是典型的分類樹決策。相當於通過年齡、長相、收入和是否公務員對將男人分為兩個類別:見和不見。假設這個女孩對男人的要求是:30歲以下、長相中等以上並且是高收入者或中等以上收入的公務員,圖1表示了女孩的決策邏輯。

如果你作為一個女生,你會優先考慮哪個條件:長相?收入?還是年齡。在考慮年齡條件時使用25歲為劃分點,還是35歲為劃分點。有這么多條件,用哪個條件特徵先做if,哪個條件特徵後做if比較優呢?還有怎麼確定用特徵中的哪個數值作為劃分的標准。這就是決策樹機器學習演算法的關鍵了。

首先,我們需要熟悉資訊理論中熵的概念。熵度量了事物的不確定性,越不確定的事物,它的熵就越大。具體的,隨機變數X的熵的表達式如下:

如拋一枚硬幣為事件 , , ,

擲一枚骰子為事件 , ,

,顯然擲骰子的不確定性比投硬幣的不確定性要高。 

熟悉了單一變數的熵,很容易推廣到多個個變數的聯合熵,這里給出兩個變數X和Y的聯合熵表達式:

有了聯合熵,又可以得到條件熵的表達式H(X|Y),條件熵類似於條件概率,它度量了我們在知道Y以後X剩下的不確定性。表達式:

我們剛才提到 度量了 的不確定性,條件熵 度量了我們在知道 以後 剩下的不確定性,那麼 呢?它度量了 在知道 以後不確定性減少程度,這個度量我們在資訊理論中稱為互信息,記為 。

信息熵 ,聯合熵 ,條件熵 ,互信息 之間的關系由圖2所示:

在決策樹的ID3演算法中,互信息 被稱為信息增益。ID3演算法就是用信息增益來判斷當前節點應該用什麼特徵來構建決策樹。信息增益大,則越適合用來分類。

下面我們用SNS社區中不真實賬號檢測的例子說明如何使用ID3演算法構造決策樹。為了簡單起見,我們假設訓練集合包含10個元素:

設L、F、H和D表示日誌密度、好友密度、是否使用真實頭像和賬號是否真實,下面計算各屬性的信息增益:

 因此日誌密度的信息增益是0.276。用同樣方法得到H和F的信息增益分別為0.033和0.553。因為F具有最大的信息增益,所以第一次分裂選擇F為分裂屬性,分裂後的結果圖3表示:

在上圖的基礎上,再遞歸使用這個方法計運算元節點的分裂屬性,最終就可以得到整個決策樹。

但是ID3演算法中還存在著一些不足之處:

1.ID3沒有考慮連續特徵,比如長度,密度都是連續值,無法在ID3運用。這大大限制了ID3的用途。

2.ID3採用信息增益大的特徵優先建立決策樹的節點。很快就被人發現,在相同條件下,取值比較多的特徵比取值少的特徵信息增益大。比如一個變數有2個值,各為 ,另一個變數為3個值,各為 ,其實他們都是完全不確定的變數,但是取3個值的比取2個值的信息增益大。(信息增益反映的給定一個條件以後不確定性減少的程度,必然是分得越細的數據集確定性更高,也就是條件熵越小,信息增益越大)如河校正這個問題呢?為了解決這些問題我們有了C4.5演算法。

對於第一個問題,不能處理連續特徵, C4.5的思路是將連續的特徵離散化。比如m個樣本的連續特徵A有m個,從小到大排列為 。則C4.5取相鄰兩樣本值的平均數,一共取得m-1個劃分點,其中第i個劃分點 表示為: 。對於這m-1個點,分別計算以該點作為二元分類點時的信息增益。選擇信息增益最大的點作為該連續特徵的二元離散分類點。比如取到的增益最大的點為 ,取大於 為類別1,小於 為類別2。這樣我們就做到了連續特徵的離散化。

對於第二個問題,信息增益作為標准容易偏向於取值較多的特徵。C4.5中提出了信息增益比:

即特徵 的對數據集 的信息增益與特徵 信息熵的比,信息增益比越大的特徵和劃分點,分類效果越好。某特徵中值得種類越多,特徵對應的特徵熵越大,它作為分母,可以校正信息增益導致的問題。

回到上面的例子:

 

同樣可得:  , 。

因為F具有最大的信息增益比,所以第一次分裂選擇F為分裂屬性,分裂後的結果圖3表示。

再遞歸使用這個方法計運算元節點的分裂屬性,最終就可以得到整個決策樹。

看完上述材料,我們知道在ID3演算法中我們使用了信息增益來選擇特徵,信息增益大的優先選擇。在C4.5演算法中,採用了信息增益比來選擇特徵,以減少信息增益容易選擇特徵值種類多的特徵的問題。但是無論是ID3還是C4.5,都是基於資訊理論的熵模型的,這裡面會涉及大量的對數運算。能不能簡化模型同時也不至於完全丟失熵模型的優點呢?有!CART分類樹演算法使用基尼系數來代替信息增益比,基尼系數代表了模型的不純度,基尼系數越小,則不純度越低,特徵越好。這和信息增益(比)是相反的。

在分類問題中,假設有 個類別,第 個類別的概率為 ,則基尼系數為:

對於給定的樣本 ,假設有 個類別,第 個類別的數量為 ,則樣本的基尼系數為:

特別的,對於樣本D,如果根據特徵A的某個值a,把D分成D1和D2兩部分,則在特徵A的條件下,D的基尼系數為:

回到上面的例子:

同理得: , 。

因為L具有最小的基尼系數,所以第一次分裂選擇L為分裂屬性。

再遞歸使用這個方法計運算元節點的分裂屬性,最終就可以得到整個決策樹。

小夥伴們如果覺得文章還行的請點個贊呦!!同時覺得文章哪裡有問題的可以評論一下  謝謝你!

④ 決策樹演算法

決策樹演算法的演算法理論和應用場景

演算法理論:

我了解的決策樹演算法,主要有三種,最早期的ID3,再到後來的C4.5和CART這三種演算法。

這三種演算法的大致框架近似。

決策樹的學習過程

1.特徵選擇

在訓練數據中 眾多X中選擇一個特徵作為當前節點分裂的標准。如何選擇特徵有著很多不同量化評估標准,從而衍生出不同的決策樹演算法。

2.決策樹生成

根據選擇的特徵評估標准,從上至下遞歸生成子節點,直到數據集不可分或者最小節點滿足閾值,此時決策樹停止生長。

3.剪枝

決策樹極其容易過擬合,一般需要通過剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有前剪枝和後剪枝兩種。

有些演算法用剪枝過程,有些沒有,如ID3。

預剪枝:對每個結點劃分前先進行估計,若當前結點的劃分不能帶來決策樹的泛化性能的提升,則停止劃分,並標記為葉結點。

後剪枝:現從訓練集生成一棵完整的決策樹,然後自底向上對非葉子結點進行考察,若該結點對應的子樹用葉結點能帶來決策樹泛化性能的提升,則將該子樹替換為葉結點。

但不管是預剪枝還是後剪枝都是用驗證集的數據進行評估。

ID3演算法是最早成型的決策樹演算法。ID3的演算法核心是在決策樹各個節點上應用信息增益准則來選擇特徵,遞歸構建決策樹。缺點是,在選擇分裂變數時容易選擇分類多的特徵,如ID值【值越多、分叉越多,子節點的不純度就越小,信息增益就越大】。

ID3之所以無法 處理缺失值、無法處理連續值、不剪紙等情況,主要是當時的重點並不是這些。

C4.5演算法與ID3近似,只是分裂標准從 信息增益 轉變成  信息增益率。可以處理連續值,含剪枝,可以處理缺失值,這里的做法多是 概率權重。

CART:1.可以處理連續值 2.可以進行缺失值處理 3.支持剪枝 4.可以分類可以回歸。

缺失值的處理是 作為一個單獨的類別進行分類。

建立CART樹

我們的演算法從根節點開始,用訓練集遞歸的建立CART樹。

1) 對於當前節點的數據集為D,如果樣本個數小於閾值或者沒有特徵,則返回決策子樹,當前節點停止遞歸。

2) 計算樣本集D的基尼系數, 如果基尼系數小於閾值 (說明已經很純了!!不需要再分了!!),則返回決策樹子樹,當前節點停止遞歸。

3) 計算當前節點現有的各個特徵的各個特徵值對數據集D的基尼系數。

4) 在計算出來的各個特徵的各個特徵值對數據集D的基尼系數中,選擇 基尼系數最小的特徵A和對應的特徵值a。根據這個最優特徵和最優特徵值,把數據集劃分成兩部分D1和D2,同時建立當前節點的左右節點,做節點的數據集D為D1,右節點的數據集D為D2。 (註:注意是二叉樹,故這里的D1和D2是有集合關系的,D2=D-D1)

5) 對左右的子節點遞歸的調用1-4步,生成決策樹。

CART採用的辦法是後剪枝法,即先生成決策樹,然後產生所有可能的剪枝後的CART樹,然後使用交叉驗證來檢驗各種剪枝的效果,選擇泛化能力最好的剪枝策略。

應用場景

比如欺詐問題中,通過決策樹演算法簡單分類,默認是CART的分類樹,默認不剪枝。然後在出圖後,自行選擇合適的葉節點進行拒絕操作。

這個不剪枝是因為欺詐問題的特殊性,欺詐問題一般而言較少,如數據的萬幾水平,即正樣本少,而整個欺詐問題需要解決的速度較快。此時只能根據業務要求,迅速針對已有的正樣本情況,在控制准確率的前提下,盡可能提高召回率。這種情況下,可以使用決策樹來簡單應用,這個可以替代原本手工選擇特徵及特徵閾值的情況。

⑤ 為什麼id3樹不能處理連續性屬性

ID3演算法是決策樹的一個經典的構造演算法,在一段時期內曾是同類研究工作的比較對象,但通過近些年國內外學者的研究,ID3演算法也暴露出一些問題,具體如下:
(1)信息增益的計算依賴於特徵數目較多的特徵,而屬性取值最多的屬性並不一定最優。
(2)ID3是非遞增演算法。
(3)ID3是單變數決策樹(在分枝節點上只考慮單個屬性),許多復雜概念的表達困難,屬性相互關系強調不夠,容易導致決策樹中子樹的重復或有些屬性在決策樹的某一路徑上被檢驗多次。
(4)抗噪性差,訓練例子中正例和反例的比例較難控制。
於是Quilan改進了ID3,提出了C4.5演算法。C4.5演算法現在已經成為最經典的決策樹構造演算法,排名數據挖掘十大經典演算法之首,下一篇文章將重點討論。
決策樹的經典構造演算法——C4.5(WEKA中稱J48)
由於ID3演算法在實際應用中存在一些問題,於是Quilan提出了C4.5演算法,嚴格上說C4.5隻能是ID3的一個改進演算法。
C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。此外,C4.5隻適合於能夠駐留於內存的數據集,當訓練集大得無法在內存容納時程序無法運行。
另外,無論是ID3還是C4.5最好在小數據集上使用,決策樹分類一般只試用於小數據。當屬性取值很多時最好選擇C4.5演算法,ID3得出的效果會非常差。

⑥ 常見決策樹分類演算法都有哪些

在機器學習中,有一個體系叫做決策樹,決策樹能夠解決很多問題。在決策樹中,也有很多需要我們去學習的演算法,要知道,在決策樹中,每一個演算法都是實用的演算法,所以了解決策樹中的演算法對我們是有很大的幫助的。在這篇文章中我們就給大家介紹一下關於決策樹分類的演算法,希望能夠幫助大家更好地去理解決策樹。
1.C4.5演算法
C4.5演算法就是基於ID3演算法的改進,這種演算法主要包括的內容就是使用信息增益率替換了信息增益下降度作為屬性選擇的標准;在決策樹構造的同時進行剪枝操作;避免了樹的過度擬合情況;可以對不完整屬性和連續型數據進行處理;使用k交叉驗證降低了計算復雜度;針對數據構成形式,提升了演算法的普適性等內容,這種演算法是一個十分使用的演算法。
2.CLS演算法
CLS演算法就是最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷的從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。
3.ID3演算法
ID3演算法就是對CLS演算法的最大改進是摒棄了屬性選擇的隨機性,利用信息熵的下降速度作為屬性選擇的度量。ID3是一種基於信息熵的決策樹分類學習演算法,以信息增益和信息熵,作為對象分類的衡量標准。ID3演算法結構簡單、學習能力強、分類速度快適合大規模數據分類。但同時由於信息增益的不穩定性,容易傾向於眾數屬性導致過度擬合,演算法抗干擾能力差。
3.1.ID3演算法的優缺點
ID3演算法的優點就是方法簡單、計算量小、理論清晰、學習能力較強、比較適用於處理規模較大的學習問題。缺點就是傾向於選擇那些屬性取值比較多的屬性,在實際的應用中往往取值比較多的屬性對分類沒有太大價值、不能對連續屬性進行處理、對雜訊數據比較敏感、需計算每一個屬性的信息增益值、計算代價較高。
3.2.ID3演算法的核心思想
根據樣本子集屬性取值的信息增益值的大小來選擇決策屬性,並根據該屬性的不同取值生成決策樹的分支,再對子集進行遞歸調用該方法,當所有子集的數據都只包含於同一個類別時結束。最後,根據生成的決策樹模型,對新的、未知類別的數據對象進行分類。
在這篇文章中我們給大家介紹了決策樹分類演算法的具體內容,包括有很多種演算法。從中我們不難發現決策樹的演算法都是經過不不斷的改造趨於成熟的。所以說,機器學習的發展在某種程度上就是由於這些演算法的進步而來的。

⑦ 決策樹之ID3演算法及其python實現

決策樹之ID3演算法及其Python實現

1. 決策樹背景知識
??決策樹是數據挖掘中最重要且最常用的方法之一,主要應用於數據挖掘中的分類和預測。決策樹是知識的一種呈現方式,決策樹中從頂點到每個結點的路徑都是一條分類規則。決策樹演算法最先基於資訊理論發展起來,經過幾十年發展,目前常用的演算法有:ID3、C4.5、CART演算法等。
2. 決策樹一般構建過程
??構建決策樹是一個自頂向下的過程。樹的生長過程是一個不斷把數據進行切分細分的過程,每一次切分都會產生一個數據子集對應的節點。從包含所有數據的根節點開始,根據選取分裂屬性的屬性值把訓練集劃分成不同的數據子集,生成由每個訓練數據子集對應新的非葉子節點。對生成的非葉子節點再重復以上過程,直到滿足特定的終止條件,停止對數據子集劃分,生成數據子集對應的葉子節點,即所需類別。測試集在決策樹構建完成後檢驗其性能。如果性能不達標,我們需要對決策樹演算法進行改善,直到達到預期的性能指標。
??註:分裂屬性的選取是決策樹生產過程中的關鍵,它決定了生成的決策樹的性能、結構。分裂屬性選擇的評判標準是決策樹演算法之間的根本區別。
3. ID3演算法分裂屬性的選擇——信息增益
??屬性的選擇是決策樹演算法中的核心。是對決策樹的結構、性能起到決定性的作用。ID3演算法基於信息增益的分裂屬性選擇。基於信息增益的屬性選擇是指以信息熵的下降速度作為選擇屬性的方法。它以的資訊理論為基礎,選擇具有最高信息增益的屬性作為當前節點的分裂屬性。選擇該屬性作為分裂屬性後,使得分裂後的樣本的信息量最大,不確定性最小,即熵最小。
??信息增益的定義為變化前後熵的差值,而熵的定義為信息的期望值,因此在了解熵和信息增益之前,我們需要了解信息的定義。
??信息:分類標簽xi 在樣本集 S 中出現的頻率記為 p(xi),則 xi 的信息定義為:?log2p(xi) 。
??分裂之前樣本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 為分類標簽的個數。
??通過屬性A分裂之後樣本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始樣本集通過屬性A的屬性值劃分為 m 個子樣本集,|Sj| 表示第j個子樣本集中樣本數量,|S| 表示分裂之前數據集中樣本總數量。
??通過屬性A分裂之後樣本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??註:分裂屬性的選擇標准為:分裂前後信息增益越大越好,即分裂後的熵越小越好。
4. ID3演算法
??ID3演算法是一種基於信息增益屬性選擇的決策樹學習方法。核心思想是:通過計算屬性的信息增益來選擇決策樹各級節點上的分裂屬性,使得在每一個非葉子節點進行測試時,獲得關於被測試樣本最大的類別信息。基本方法是:計算所有的屬性,選擇信息增益最大的屬性分裂產生決策樹節點,基於該屬性的不同屬性值建立各分支,再對各分支的子集遞歸調用該方法建立子節點的分支,直到所有子集僅包括同一類別或沒有可分裂的屬性為止。由此得到一棵決策樹,可用來對新樣本數據進行分類。
ID3演算法流程:
(1) 創建一個初始節點。如果該節點中的樣本都在同一類別,則演算法終止,把該節點標記為葉節點,並用該類別標記。
(2) 否則,依據演算法選取信息增益最大的屬性,該屬性作為該節點的分裂屬性。
(3) 對該分裂屬性中的每一個值,延伸相應的一個分支,並依據屬性值劃分樣本。
(4) 使用同樣的過程,自頂向下的遞歸,直到滿足下面三個條件中的一個時就停止遞歸。
??A、待分裂節點的所有樣本同屬於一類。
??B、訓練樣本集中所有樣本均完成分類。
??C、所有屬性均被作為分裂屬性執行一次。若此時,葉子結點中仍有屬於不同類別的樣本時,選取葉子結點中包含樣本最多的類別,作為該葉子結點的分類。
ID3演算法優缺點分析
優點:構建決策樹的速度比較快,演算法實現簡單,生成的規則容易理解。
缺點:在屬性選擇時,傾向於選擇那些擁有多個屬性值的屬性作為分裂屬性,而這些屬性不一定是最佳分裂屬性;不能處理屬性值連續的屬性;無修剪過程,無法對決策樹進行優化,生成的決策樹可能存在過度擬合的情況。

⑧ 什麼是ID3演算法

ID3演算法是由Quinlan首先提出的。該演算法是以資訊理論為基礎,以信息熵和信息增益度為衡量標准,從而實現對數據的歸納分類。以下是一些資訊理論的基本概念:
定義1:若存在n個相同概率的消息,則每個消息的概率p是1/n,一個消息傳遞的信息量為-Log2(1/n)
定義2:若有n個消息,其給定概率分布為P=(p1,p2…pn),則由該分布傳遞的信息量稱為P的熵,記為

定義3:若一個記錄集合T根據類別屬性的值被分成互相獨立的類C1C2..Ck,則識別T的一個元素所屬哪個類所需要的信息量為Info(T)=I(p),其中P為C1C2…Ck的概率分布,即P=(|C1|/|T|,…..|Ck|/|T|)
定義4:若我們先根據非類別屬性X的值將T分成集合T1,T2…Tn,則確定T中一個元素類的信息量可通過確定Ti的加權平均值來得到,即Info(Ti)的加權平均值為:
Info(X, T)=(i=1 to n 求和)((|Ti|/|T|)Info(Ti))
定義5:信息增益度是兩個信息量之間的差值,其中一個信息量是需確定T的一個元素的信息量,另一個信息量是在已得到的屬性X的值後需確定的T一個元素的信息量,信息增益度公式為:
Gain(X, T)=Info(T)-Info(X, T)
ID3演算法計算每個屬性的信息增益,並選取具有最高增益的屬性作為給定集合的測試屬性。對被選取的測試屬性創建一個節點,並以該節點的屬性標記,對該屬性的每個值創建一個分支據此劃分樣本.
數據描述
所使用的樣本數據有一定的要求,ID3是:
描述-屬性-值相同的屬性必須描述每個例子和有固定數量的價值觀。
預定義類-實例的屬性必須已經定義的,也就是說,他們不是學習的ID3。
離散類-類必須是尖銳的鮮明。連續類分解成模糊范疇(如金屬被「努力,很困難的,靈活的,溫柔的,很軟」都是不可信的。
足夠的例子——因為歸納概括用於(即不可查明)必須選擇足夠多的測試用例來區分有效模式並消除特殊巧合因素的影響。
屬性選擇
ID3決定哪些屬性如何是最好的。一個統計特性,被稱為信息增益,使用熵得到給定屬性衡量培訓例子帶入目標類分開。信息增益最高的信息(信息是最有益的分類)被選擇。為了明確增益,我們首先從資訊理論借用一個定義,叫做熵。每個屬性都有一個熵。

⑨ 用python實現紅酒數據集的ID3,C4.5和CART演算法

ID3演算法介紹
ID3演算法全稱為迭代二叉樹3代演算法(Iterative Dichotomiser 3)
該演算法要先進行特徵選擇,再生成決策樹,其中特徵選擇是基於「信息增益」最大的原則進行的。
但由於決策樹完全基於訓練集生成的,有可能對訓練集過於「依賴」,即產生過擬合現象。因此在生成決策樹後,需要對決策樹進行剪枝。剪枝有兩種形式,分別為前剪枝(Pre-Pruning)和後剪枝(Post-Pruning),一般採用後剪枝。
信息熵、條件熵和信息增益
信息熵:來自於香農定理,表示信息集合所含信息的平均不確定性。信息熵越大,表示不確定性越大,所含的信息量也就越大。
設x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1

,x
2

,x
3

,...x
n

為信息集合X的n個取值,則x i x_ix
i

的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i

,i=1,2,3,...,n

信息集合X的信息熵為:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1

n

p
i

logp
i

條件熵:指已知某個隨機變數的情況下,信息集合的信息熵。
設信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1

,y
2

,y
3

,...y
m

組成的隨機變數集合Y,則隨機變數(X,Y)的聯合概率分布為
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij

條件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1

m

p(y
j

)H(X∣y
j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j

)=−
j=1

m

p(y
j

)
i=1

n

p(x
i

∣y
j

)logp(x
i

∣y
j

)
和貝葉斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i

y
j

)=p(x
i

∣y
j

)p(y
j

)
可以化簡條件熵的計算公式為:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1

m

i=1

n

p(x
i

,y
j

)log
p(x
i

,y
j

)
p(x
i

)

信息增益:信息熵-條件熵,用於衡量在知道已知隨機變數後,信息不確定性減小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)

python代碼實現
import numpy as np
import math

def calShannonEnt(dataSet):
""" 計算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy

def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特徵列label等於value,並且過濾掉改特徵列的數據集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)

def chooseFeature(dataSet):
""" 通過計算信息增益選擇最合適的特徵"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0

for v in uniqueValues: #計算條件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #計算信息增益

if infoGain >= bestInfoGain: #選擇最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):
""" 通過訓練集生成決策樹 """
featureName = featNames[:] # 拷貝featNames,此處不能直接用賦值操作,否則新變數會指向舊變數的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一個類別
return classList[0]
if dataSet.shape[1] == 1: #當所有特徵屬性都利用完仍然無法判斷樣本屬於哪一類,此時歸為該數據集中數量最多的那一類
return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #選擇特徵
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已選特徵列
decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已選特徵列所包含的類別, 通過遞歸生成決策樹
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree

def classify(decisionTree, featnames, featList):
""" 使用訓練所得的決策樹進行分類 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子節點仍是樹,則遞歸查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鳶尾花數據集對該演算法進行測試。由於ID3演算法只能用於標稱型數據,因此用在對連續型的數值數據上時,還需要對數據進行離散化,離散化的方法稍後說明,此處為了簡化,先使用每一種特徵所有連續性數值的中值作為分界點,小於中值的標記為1,大於中值的標記為0。訓練1000次,統計准確率均值。

from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]

scoreL = []
for i in range(1000): #對該過程進行10000次
trainData, testData = train_test_split(data) #區分測試集和訓練集

featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #對訓練集每個特徵,以中值為分界點進行離散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
輸出結果為:score: 0.7335,即准確率有73%。每次訓練和預測的准確率分布如下:

數據離散化
然而,在上例中對特徵值離散化的劃分點實際上過於「野蠻」,此處介紹一種通過信息增益最大的標准來對數據進行離散化。原理很簡單,當信息增益最大時,說明用該點劃分能最大程度降低數據集的不確定性。
具體步驟如下:

對每個特徵所包含的數值型特徵值排序
對相鄰兩個特徵值取均值,這些均值就是待選的劃分點
用每一個待選點把該特徵的特徵值劃分成兩類,小於該特徵點置為1, 大於該特徵點置為0,計算此時的條件熵,並計算出信息增益
選擇信息使信息增益最大的劃分點進行特徵離散化
實現代碼如下:

def filterRawData(dataSet, colIndex, value, tag):
""" 用於把每個特徵的連續值按照區分點分成兩類,加入tag參數,可用於標記篩選的是哪一部分數據"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)

def dataDiscretization(dataSet, featName):
""" 對數據每個特徵的數值型特徵值進行離散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #對於每一個特徵
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相鄰兩個值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #對於每個劃分點
subEntropy = 0.0 #計算該劃分點的信息熵
for tag in range(2): #分別劃分為兩類
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)

## 計算信息增益
infoGain = entropy - subEntropy
## 選擇最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新對數據進行離散化,並重復該步驟1000次,同時用sklearn中的DecisionTreeClassifier對相同數據進行分類,分別統計平均准確率。運行代碼如下:

from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #對該過程進行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #區分測試集和訓練集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根據信息增益離散化
for i in range(testData.shape[1]-1): #根據測試集的區分點離散化訓練集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
兩者准確率分別為:
score: 0.7037894736842105
score-sk: 0.7044736842105263

准確率分布如下:

兩者的結果非常一樣。
(但是。。為什麼根據信息熵離散化得到的准確率比直接用均值離散化的准確率還要低啊??哇的哭出聲。。)

最後一次決策樹圖形如下:

決策樹剪枝
由於決策樹是完全依照訓練集生成的,有可能會有過擬合現象,因此一般會對生成的決策樹進行剪枝。常用的是通過決策樹損失函數剪枝,決策樹損失函數表示為:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a

(T)=
t=1

T

N
t

H
t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H
t

(T)表示葉子節點t的熵值,T表示決策樹的深度。前項∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T

N
t

H
t

(T)是決策樹的經驗損失函數當隨著T的增加,該節點被不停的劃分的時候,熵值可以達到最小,然而T的增加會使後項的值增大。決策樹損失函數要做的就是在兩者之間進行平衡,使得該值最小。
對於決策樹損失函數的理解,如何理解決策樹的損失函數? - 陶輕松的回答 - 知乎這個回答寫得挺好,可以按照答主的思路理解一下

C4.5演算法
ID3演算法通過信息增益來進行特徵選擇會有一個比較明顯的缺點:即在選擇的過程中該演算法會優先選擇類別較多的屬性(這些屬性的不確定性小,條件熵小,因此信息增益會大),另外,ID3演算法無法解決當每個特徵屬性中每個分類都只有一個樣本的情況(此時每個屬性的條件熵都為0)。
C4.5演算法ID3演算法的改進,它不是依據信息增益進行特徵選擇,而是依據信息增益率,它添加了特徵分裂信息作為懲罰項。定義分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i

n

∣X∣
∣X
i



log
∣X∣
∣X
i



則信息增益率為:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)

關於ID3和C4.5演算法
在學習分類回歸決策樹演算法時,看了不少的資料和博客。關於這兩個演算法,ID3演算法是最早的分類演算法,這個演算法剛出生的時候其實帶有很多缺陷:

無法處理連續性特徵數據
特徵選取會傾向於分類較多的特徵
沒有解決過擬合的問題
沒有解決缺失值的問題
即該演算法出生時是沒有帶有連續特徵離散化、剪枝等步驟的。C4.5作為ID3的改進版本彌補列ID3演算法不少的缺陷:

通過信息最大增益的標准離散化連續的特徵數據
在選擇特徵是標准從「最大信息增益」改為「最大信息增益率」
通過加入正則項系數對決策樹進行剪枝
對缺失值的處理體現在兩個方面:特徵選擇和生成決策樹。初始條件下對每個樣本的權重置為1。
特徵選擇:在選取最優特徵時,計算出每個特徵的信息增益後,需要乘以一個**「非缺失值樣本權重占總樣本權重的比例」**作為系數來對比每個特徵信息增益的大小
生成決策樹:在生成決策樹時,對於缺失的樣本我們按照一定比例把它歸屬到每個特徵值中,比例為該特徵每一個特徵值占非缺失數據的比重
關於C4.5和CART回歸樹
作為ID3的改進版本,C4.5克服了許多缺陷,但是它自身還是存在不少問題:

C4.5的熵運算中涉及了對數運算,在數據量大的時候效率非常低。
C4.5的剪枝過於簡單
C4.5隻能用於分類運算不能用於回歸
當特徵有多個特徵值是C4.5生成多叉樹會使樹的深度加深
————————————————
版權聲明:本文為CSDN博主「Sarah Huang」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/weixin_44794704/article/details/89406612

閱讀全文

與id3演算法特點相關的資料

熱點內容
怎麼投訴蘋果商店app 瀏覽:470
華為手機如何看有多少個app 瀏覽:734
btr如何管理別的伺服器 瀏覽:410
spwm軟體演算法 瀏覽:184
70多歲單身程序員 瀏覽:221
高考考前解壓拓展訓練 瀏覽:217
用紙做解壓玩具不用澆水 瀏覽:584
谷輪壓縮機序列號 瀏覽:736
牛頓插值法編程 瀏覽:366
php多用戶留言系統 瀏覽:731
安卓和蘋果如何切換流量 瀏覽:703
怎麼知道dns伺服器是多少 瀏覽:976
5995用什麼簡便演算法脫式計算 瀏覽:918
電腦上如何上小米雲伺服器地址 瀏覽:921
手機資料解壓密碼 瀏覽:444
44引腳貼片單片機有哪些 瀏覽:692
阿里程序員腦圖 瀏覽:189
廣東編程貓學習班 瀏覽:708
上海數控編程培訓學校 瀏覽:313
怎麼下載我的解壓神器 瀏覽:634