導航:首頁 > 源碼編譯 > 標準的粒子群演算法

標準的粒子群演算法

發布時間:2022-04-30 12:54:59

Ⅰ 標准粒子群演算法如何選取每次迭代最優點

一般通過實驗觀察特定迭代次數下的找到最優解的次數和解的質量,然後在求解過程所耗時間和求解精度之間取一個恰當的值.

Ⅱ 粒子群演算法

傳統的多目標優化方法是將多目標問題通過加權求和轉化為單目標問題來處理的,而粒子演算法主要是解決一些多目標優化問題的(例如機械零件的多目標設計優化),其優點是容易實現,精度高,收斂速度快,你可以參照http://ke..com/view/1531379.htm,對它產生的背景,原理,數學描述和流程都寫的很清楚,當然最主要的還是結合你的優化對象編寫程序。

Ⅲ 粒子群演算法 個體極值 全局極值怎麼求

粒子群演算法中每個粒子都記憶自己的最好位置,即從進化開始到現在這個粒子能使目標函數達到最大或是最小的那個時刻粒子的位置。個體極值就是粒子在最好位置所得到的目標函數的值。全局極值就是在所有粒子的個體極值中最大或是最小的那個值,與只對應的就是全局最優粒子的位置。
對有約束的優化函數,一般是將約束條件加入到目標函數中,然後計算總體的值,以此來作為評價標准。

Ⅳ 粒子群演算法及其應用

既然是數學系的,可以考慮從粒子群演算法的收斂性證明和分布性檢驗方面著手,偏理論性的證明,這方面比較欠缺,有點類似於高樓地基不穩,大家卻在上面繼續壘
可以參考遺傳演算法的模式定理或隱性並行性定理等,如果能夠提出關於粒子群演算法的定理,應該足夠具有挑戰性了
還有就是對粒子群演算法進行演算法融合或改進,然後針對改進的演算法進行測試,檢驗其在函數優化等方面的效能。

Ⅳ 什麼是粒子群演算法

粒子群演算法,也稱粒子群優化演算法(Partical Swarm Optimization),縮寫為 PSO, 是近年來發展起來的一種新的進化演算法((Evolu2tionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和遺傳演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。 PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。 PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 粒子公式 在找到這兩個最優值時,粒子根據如下的公式來更新自己的速度和新的位置: v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, w是慣性權重,persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2. 程序的偽代碼如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax

Ⅵ 怎麼判斷粒子群優化演算法有沒有局部收斂

轉載請註明:來自網路知道——小七的風
首先說,標準的粒子群演算法是通過控制權重系數ω的線性下降來使得種群收斂的,從收斂圖上看,如果在多次迭代後(比如100次迭代後)如果最優粒子的適應度值不再變化即認為此時演算法已經達到收斂。
理論上,粒子群通過自身的更新機制使得每個粒子在每次的迭代中會向該粒子的歷史最優位置以及全局粒子位置的中間(或周圍)位置靠近,這樣雖然保證了粒子搜索的高效性(假設最優點存在於全局最優點與歷史最優點的中間位置)但勢必帶來了粒子搜索范圍的減少,所以容易出現局部收斂,並且已有相關文獻證明了這不是一個全局最優的演算法。
還有一種簡單的做法是證偽,即不去直接證明粒子群是一個全局最優,而是試圖去找到一個點,這個點的適應度值比粒子群找到的全局最優點的適應度值更好,這樣就間接說明了演算法沒有找到全局最優點(可以採用純隨機,直到找到比粒子群提供的全局最優點好為止)

Ⅶ 分析標准粒子群演算法的不足及改進的方法

一個以上的目標,以優化
相對傳統的多目標優化方法在解決多目標問題,PSO具有很大的優勢。首先,PSO演算法和高效的搜索功能,有利於在這個意義上,多目標的最優解;其次,PSO代表了整個解決方案的人口集固有的並行性,同時搜索多個非劣解,所以容易搜索多個Pareto最佳的解決方案;此外,PSO通用的適合處理所有類型的目標函數和約束條件,PSO容易與傳統相結合的方法,和然後提出了有效的方法來解決一個具體的問題。 PSO本身,為了更好地解決多目標優化問題,必須解決的問題的全局最優粒子和個人選擇的最優粒子。為全局最優粒子的選擇,一方面,該演算法具有更好的收斂速度,另一方面帕累托邊界分散體的溶液中。如果在最佳的單個顆粒的選擇,需要較少的計算復雜性,並且是僅由較少數量的比較非
劣解更新。迄今為止,基於PSO的多目標優化,主要有以下
思路:
(1)向量法和加權方法。文獻[20]的固定權重法,自適應權重法和向量評估方法的第一次,PSO解決MO問題。然而,對於一個給定的優化問題,權重的方法通常是很難獲得一組合適的權重向量評價方法MO的問題是,往往無法得到滿意的解決方案。
(2)基於Pareto方法。 [21]帕累托排序機制和PSO相結合,處理的問題,多目標優化,Pareto排序方法來選擇一組的精英,和輪盤賭選擇全局最優粒子。雖然輪盤賭選擇機制,使所有的帕累托個人選擇的概率是一樣的,但實際上只有少數人的選擇的概率就越大,因此不利於保持種群多樣性;文獻[22]通過引入在PSO帕累托競爭機制,選擇全局最優粒子的顆粒知識基礎。候選個人隨機選自人口比較集進行比較,以確定非劣解,該演算法的成功取決於比較集的大小的參數設置。如果這個參數是太小了,選擇的過程,從人口的非劣效性個人可能是太小了,如果這個參數是太大,它可能會出現過早收斂。
(3)距離的方法。 [23],被分配的各個的當前的解決方案之間的距離的基礎上Pa2reto的解決方案,其適應值,以便選擇全局最優粒子。隨著距離的方法需要被初始化潛在的解決方案,如果初始電位值太大,不同的解決方案,以適應不同的值並不顯著。這將導致在選擇壓力太小或個別均勻分布,導致在PSO演算法收斂速度非常慢。
(4)附近的「。文獻[24]提出了動態鄰域的選擇策略,為優化目標的定義,目標,和其他所有的目標定義的目標附近,然後選擇全局最優粒子的動態鄰域的策略,但該方法更敏感的目標函數的優化目標選擇和附近的排序。
(5)多組法。文獻[25]的人口劃分成多個子群,以及每個子群PSO演算法,通過搜索Pareto最優解的各種子群之間的信息交流。然而,由於需要增加的粒子的數量增加的計算量。
(6)非排名的方法。 [26]使用非主導的排序選擇全局最優的粒子。整個人口,粒子的個人最好成績粒子和它的後代,有利於提供一個適當的選擇壓力,小生境技術,以增加種群多樣性。比較所有粒子的個人最好成績顆粒在整個人群遺傳給後代,但是,由於其本身的性質是不利於人口的多樣性,容易形成早熟。此外,文獻[27]最大最小策略,博弈論引入PSO解決多MO。最大最小策略,以確定粒子的適應值,可以判斷帕累托最優的解決方案,而不需要集群和小生境技術。
2約束優化
在最近幾年也取得了一些進展,PSO演算法在約束最優化。基於PSO-的約束優化工作分為兩種類型:①罰函數法;②設計特定的進化操作或約束修正系數。 [28]採用罰函數法,採用非固定多段映射罰函數將約束的優化問題,然後利用PSO解決問題的轉換後,模擬結果表明,該演算法相對進化策略和遺傳演算法的優勢,但罰函數的設計過於復雜,不利於解決;文獻[29],一個可行的解決方案,保留策略處理約束,即,一方面要更新所有的顆粒的存儲區域中到只保留可行的解決方案,在另一方面在初始化階段的所有的顆粒從一個可行的解決方案的空間值?初始的可行的解決方案空間,然而,是難以確定的很多問題,文獻[30 ]提出的多層信息共享策略粒子群與約束原則來處理,根據約束矩陣多層Pareto排序機制的微粒,從而一些微粒,以確定個人的搜索方向的其餘。
3離散優化為離散優化解決方案空間是離散點的集合,而不是連續PSO解決離散優化問題,必須予以糾??正的速度和位置更新公式,或變形。基於PSO的離散優化可分為以下三類:
速度(1)的位置變化的概率。 [31]首先提出了離散二進制PSO。二進制粒子的位置編碼器,Sigmoid函數,速度約束在[0,1],代表粒子的概率立場;法[32] [31]在文獻
提高的地址更換安排。安排更換顆粒,速度是指根據兩個粒子的相似性,以確定粒子的位置變化也引入突變操作,以防止陷入局部極小的最優粒子的概率。
(2)重新定義的PSO的操作。 [33]通過重新定義粒子的位置,速度,和他們的加法和減法乘法運算,提出了一種新的離散粒子群,並為解決旅行商問題。雖然該演算法是有效的,但它提供了一種新的思維方式求解組合優化問題。
(3)連續PSO離散的情況下。 [34]採用連續PSO,解決分布式計算機任務的分配問題。於實數被轉換為一個正整數,和符號的實數部分和小數部分的
分除去。結果表明,在溶液中的質量和速度的方法的演算法是優於遺傳演算法。
4動態優化
在許多實際工程問題,優化環境是不確定的,或動態。因此,優化演算法必須有能力與環境的動態變化做出相應的調整,以最佳的解決方案,該演算法具有一定的魯棒性。 [35]首次提出了PSO跟蹤動態系統[36]提出了自適應PSO自動跟蹤動態系統的變化,種群粒子檢測方法和粒子重新初始化PSO系統變化的跟蹤能力增強;文獻[37]迅速變化的動態環境中,在粒子速度更新公式的變化條目的增加,消除了需要在環境中的變化來檢測,可以跟蹤環境處理。雖然該研究少得多,但不容質疑的,是一個重要的研究內容。

粒子群演算法的MATLAB程序

初始化粒子群;

對於每個粒子
計算他們的身體健康;
如果(健身優於粒子的歷史最好值)
歷史最好的個人裨錫更新;

如果選擇當前粒子群粒子;(當前的最優粒子比歷史最好粒子組)
與目前最好的粒子更新PG組;對於每個粒子

更新粒子類型①速度;
更新的位置粒子類型②;

雖然還沒有達到最大迭代次數,或不符合的最小誤差。

閱讀全文

與標準的粒子群演算法相關的資料

熱點內容
戀聽app哪裡下載 瀏覽:707
金鏟鏟之戰為什麼一直伺服器滿 瀏覽:70
安卓手機如何像蘋果一樣app資源庫 瀏覽:127
安卓本地資料庫加密方式 瀏覽:644
二沖程壓縮比 瀏覽:145
單片機acall指令功能 瀏覽:112
如何下載醫保商戶app 瀏覽:799
python爬蟲實現獲取斗魚主播信息 瀏覽:459
mv命令參數 瀏覽:495
彈射世界強化彈射演算法 瀏覽:439
xp壓縮包軟體下載 瀏覽:717
手機at命令撥號 瀏覽:999
解壓過視頻在哪裡看 瀏覽:184
ipad無法選擇伺服器登錄怎麼辦 瀏覽:828
程序員適合開網店嗎 瀏覽:586
應聘浪潮程序員 瀏覽:873
07年畢業的深圳程序員薪資 瀏覽:924
java解析網頁 瀏覽:837
2020廣西藝術分演算法 瀏覽:102
手機解壓文件大不能解壓 瀏覽:100