1. RISC的指令集使編譯優化工作更____
哪裡說RISC更復雜了?
2. 如何優化JAVA代碼及提高執行效率
張小喜告別996 實現高效編程 減少開發壓力 開啟Java高效編程之門(完整版高清視頻)網路網盤
鏈接:
若資源有問題歡迎追問~
3. 應用編譯優化哪個模式好
即時編譯技術。
JIT為「即時編譯技術」,當App運行時,每當遇到一個新類,JIT編譯器就會對這個類進行編譯,經過編譯後的代碼,會被優化成相當精簡的原生型指令碼(即nativecode),這樣在下次執行到相同邏輯的時候,速度就會更快。
4. 編譯器優化怎麼定義
常見的優化和變新有:函數內嵌(inlining),無用代碼刪除(Dead code elimination),標准化循環結構(loop normalization),循環體展開(loop unrolling),循環體合並,分裂(loop fusion,loop fission),數組填充(array padding),等等。 優化和變形的目的是減少代碼的長度,提高內存(memory),緩存(cache)的使用率,減少讀寫磁碟,訪問網路數據的頻率。更高級的優化甚至可以把序列化的代碼(serial code)變成並行運算,多線程的代碼(parallelized,multi-threaded code)。
機器代碼的生成是優化變型後的中間代碼轉換成機器指令的過程。現代編譯器主要採用生成匯編代碼(assembly code)策略,而不直接生成二進制的目標代碼(binary object code)。即使在代碼生成階段,高級編譯器仍然要做很多分析,優化,變形工作。例如如何分配寄存器(register allocatioin),如何選擇合適的機器指令,如何合並幾句代碼成一句等等。
5. 如何優化單片機C語言代碼 轉
優化代碼和優化速度實際上是一個予盾的統一,一般是優化了代碼的尺寸,就會帶來執行時間的增加,如果優化了程序的執行速度,通常會帶來代碼增加的副作用,很難魚與熊掌兼得,只能在設計時掌握一個平衡點。 一、程序結構的優化 1、程序的書寫結構雖然書寫格式並不會影響生成的代碼質量,但是在實際編寫程序時還是應該尊循一定的書寫規則,一個書寫清晰、明了的程序,有利於以後的維護。在書寫程序時,特別是對於While、for、do…while、if… elst、switch…case 等語句或這些語句嵌套組合時,應採用"縮格"的書寫形式, 2、標識符程序中使用的用戶標識符除要遵循標識符的命名規則以外,一般不要用代數符號(如a、b、x1、y1)作為變數名,應選取具有相關含義的英文單詞(或縮寫)或漢語拼音作為標識符,以增加程序的可讀性,如:count、 number1、red、work 等。 3、程序結構C 語言是一種高級程序設計語言,提供了十分完備的規范化流程式控制制結構。因此在採用C 語言設計單片機應用系統程序時,首先要注意盡可能採用結構化的程序設計方法,這樣可使整個應用系統程序結構清晰,便於調試和維護。於一個較大的應用程序,通常將整個程序按功能分成若干個模塊,不同模塊完成不同的功能。各個模塊可以分別編寫,甚至還可以由不同的程序員編寫,一般單個模塊完成的功能較為簡單,設計和調試也相對容易一些。在 C 語言中,一個函數就可以認為是一個模塊。所謂程序模塊化,不僅是要將整個程序劃分成若干個功能模塊,更重要的是,還應該注意保持各個模塊之間變數的相對獨立性,即保持模塊的獨立性,盡量少使用全局變數等。對於一些常用的功能模塊,還可以封裝為一個應用程序庫,以便需要時可以直接調用。但是在使用模塊化時,如果將模塊分成太細太小,又會導致程序的執行效率變低 (進入和退出一個函數時保護和恢復寄存器佔用了一些時間)。 4、定義常數在程序化設計過程中,對於經常使用的一些常數,如果將它直接寫到程序中去,一旦常數的數值發生變化,就必須逐個找出程序中所有的常數,並逐一進行修改,這樣必然會降低程序的可維護性。因此,應盡量當採用預處理命令方式來定義常數,而且還可以避免輸入錯誤。 5、減少判斷語句能夠使用條件編譯(ifdef)的地方就使用條件編譯而不使用if 語句,有利於減少編譯生成的代碼的長度。 6、表達式對於一個表達式中各種運算執行的優先順序不太明確或容易混淆的地方,應當採用圓括弧明確指定它們的優先順序。一個表達式通常不能寫得太復雜,如果表達式太復雜,時間久了以後,自己也不容易看得懂,不利於以後的維護。 7、函數對於程序中的函數,在使用之前,應對函數的類型進行說明,對函數類型的說明必須保證它與原來定義的函數類型一致,對於沒有參數和沒有返回值類型的函數應加上"void"說明。如果果需要縮短代碼的長度,可以將程序中一些公共的程序段定義為函數,在Keil 中的高級別優化就是這樣的。如果需要縮短程序的執行時間,在程序調試結束後,將部分函數用宏定義來代替。注意,應該在程序調試結束後再定義宏,因為大多數編譯系統在宏展開之後才會報錯,這樣會增加排錯的難度。 8、盡量少用全局變數,多用局部變數。因為全局變數是放在數據存儲器中,定義一個全局變數,MCU 就少一個可以利用的數據存儲器空間,如果定義了太多的全局變數,會導致編譯器無足夠的內存可以分配。而局部變數大多定位於 MCU 內部的寄存器中,在絕大多數MCU 中,使用寄存器操作速度比數據存儲器快,指令也更多更靈活,有利於生成質量更高的代碼,而且局部變數所的佔用的寄存器和數據存儲器在不同的模塊中可以重復利用。 9、設定合適的編譯程序選項許多編譯程序有幾種不同的優化選項,在使用前應理解各優化選項的含義,然後選用最合適的一種優化方式。通常情況下一旦選用最高級優化,編譯程序會近乎病態地追求代碼優化,可能會影響程序的正確性,導致程序運行出錯。因此應熟悉所使用的編譯器,應知道哪些參數在優化時會受到影響,哪些參數不會受到影響。在ICCAVR 中,有"Default"和 "Enable Code Compression"兩個優化選項。在CodeVisionAVR 中,"Tiny"和 "small"兩種內存模式。在IAR==有7 種不同的內存模式選項。在GCCAVR 中優化選項更多,一不小心更容易選到不恰當的選項。 二、代碼的優化1、選擇合適的演算法和數據結構應該熟悉演算法語言,知道各種演算法的優缺點,具體資料請參見相應的參考資料,有很多計算機書籍上都有介紹。將比較慢的順序查找法用較快的二分查找或亂序查找法代替,插入排序或冒泡排序法用快速排序、合並排序或根排序代替,都可以大大提高程序執行的效率。.選擇一種合適的數據結構也很重要,比如你在一堆隨機存放的數中使用了大量的插入和刪除指令,那使用鏈表要快得多。數組與指針具有十分密碼的關系,一般來說,指針比較靈活簡潔,而數組則比較直觀,容易理解。對於大部分的編譯器,使用指針比使用數組生成的代碼更短,執行效率更高。但是在Keil 中則相反,使用數組比使用的指針生成的代碼更短。 2、使用盡量小的數據類型能夠使用字元型(char)定義的變數,就不要使用整型(int)變數來定義;能夠使用整型變數定義的變數就不要用長整型(long int),能不使用浮點型(float)變數就不要使用浮點型變數。當然,在定義變數後不要超過變數的作用范圍,如果超過變數的范圍賦值,C 編譯器並不報錯,但程序運行結果卻錯了,而且這樣的錯誤很難發現。在ICCAVR 中,可以在 Options 中設定使用printf 參數,盡量使用基本型參數(%c、%d、%x、%X、%u 和%s 格式說明符),少用長整型參數(%ld、%lu、%lx 和%lX 格式說明符),至於浮點型的參數(%f)則盡量不要使用,其它C 編譯器也一樣。在其它條件不變的情況下,使用%f 參數,會使生成的代碼的數量增加很多,執行速度降低。 3、使用自加、自減指令通常使用自加、自減指令和復合賦值表達式(如a- =1 及a+=1 等)都能夠生成高質量的程序代碼,編譯器通常都能夠生成inc 和 dec 之類的指令,而使用a=a+1 或a=a-1 之類的指令,有很多C 編譯器都會生成二到三個位元組的指令。在AVR 單片適用的ICCAVR、GCCAVR、IAR 等C 編譯器以上幾種書寫方式生成的代碼是一樣的,也能夠生成高質量的inc 和dec 之類的的代碼。 4、減少運算的強度可以使用運算量小但功能相同的表達式替換原來復雜的的表達式。如下:(1)、求余運算。a=a%8;可以改為:a=a&7;說明:位操作只需一個指令周期即可完成,而大部分的C 編譯器的"%"運算均是調用子程序來完成,代碼長、執行速度慢。通常,只要求是求2n 方的余數,均可使用位操作的方法來代替。(2)、平方運算a=pow(a,2.0);可以改為:a=a*a;說明:在有內置硬體乘法器的單片機中(如51 系列),乘法運算比求平方運算快得多,因為浮點數的求平方是通過調用子程序來實現的,在自帶硬體乘法器的 AVR 單片機中,如ATMega163 中,乘法運算只需2 個時鍾周期就可以完成。既使是在沒有內置硬體乘法器的AVR 單片機中,乘法運算的子程序比平方運算的子程序代碼短,執行速度快。如果是求3 次方,如:a=pow(a,3.0);更改為:a=a*a*a;則效率的改善更明顯。(3)、用移位實現乘除法運算 a=a*4;b=b/4;可以改為:a=a 2; b=b 2;說明:通常如果需要乘以或除以2n,都可以用移位的方法代替。在 ICCAVR 中,如果乘以2n,都可以生成左移的代碼,而乘以其它的整數或除以任何數,均調用乘除法子程序。用移位的方法得到代碼比調用乘除法子程序生成的代碼效率高。實際上,只要是乘以或除以一個整數,均可以用移位的方法得到結果,如:a=a*9 可以改為:a=(a 3)+a 5、循環(1)、循環語對於一些不需要循環變數參加運算的任務可以把它們放到循環外面,這里的任務包括表達式、函數的調用、指針運算、數組訪問等,應該將沒有必要執行多次的操作全部集合在一起,放到一個init 的初始化程序中進行。(2)、延時函數:通常使用的延時函數均採用自加的形式:void delay(void){unsigned int i;for(i=0;i 1000;i++);}將其改為自減延時函數:void delay(void){unsigned int i; for(i=1000;i 0;i--);}兩個函數的延時效果相似,但幾乎所有的C 編譯對後一種函數生成的代碼均比前一種代碼少1~3 個位元組,因為幾乎所有的MCU 均有為0 轉移的指令,採用後一種方式能夠生成這類指令。在使用while 循環時也一樣,使用自減指令控制循環會比使用自加指令控制循環生成的代碼更少 1~3 個字母。但是在循環中有通過循環變數"i"讀寫數組的指令時,使用預減循環時有可能使數組超界,要引起注意。(3)while 循環和do…while 循環用 while 循環時有以下兩種循環形式:unsigned int i;i=0;while(i 1000){i++;//用戶程序}或:unsigned int i;i=1000;do i--;//用戶程序 while(i 0);在這兩種循環中,使用do…while 循環編譯後生成的代碼的長度短於while 循環。6、查表在程序中一般不進行非常復雜的運算,如浮點數的乘除及開方等,以及一些復雜的數學模型的插補運算,對這些即消耗時間又消費資源的運算,應盡量使用查表的方式,並且將數據表置於程序存儲區。如果直接生成所需的表比較困難,也盡量在啟動時先計算,然後在數據存儲器中生成所需的表,後以在程序運行直接查表就可以了,減少了程序執行過程中重復計算的工作量。7、其它比如使用在線匯編及將字元串和一些常量保存在程序存儲器中,均有利於優化。
6. 編譯的優化,有尺寸和速度兩種方式,分別有什麼意義
條件編譯:
#define A
……
#if A
代碼1
#endif
說明:如果編譯器遇到最後面以#endif結尾的#if指令時,當指定的符號已經定義時,才執行#if和#endif之間的代碼。如上面的代碼,由於A已經定義,則執行編譯代碼1.若將#define A刪掉,則無視代碼1.
所謂包含文件目錄就是你安裝編譯軟體時,在安裝目錄下生成的一些目錄中,大多數會有一個include目錄,在該目錄下存放了編譯器提供的頭文件,像常見的stdio.h等頭文件。
7. 如何優化你的C代碼
一、程序結構的優化
1、程序的書寫結構
雖然書寫格式並不會影響生成的代碼質量,但是在實際編寫程序時還是應該尊循一定的書寫規則,一個書寫清晰、明了的程序,有利於以後的維護。在書寫程序時,特別是對於While、for、do…while、if…elst、switch…case等語句或這些語句嵌套組合時,應採用「縮格」的書寫形式,
2、標識符
程序中使用的用戶標識符除要遵循標識符的命名規則以外,一般不要用代數符號(如a、b、x1、y1)作為變數名,應選取具有相關含義的英文單詞(或縮寫)或漢語拼音作為標識符,以增加程序的可讀性,如:count、number1、red、work等。
3、程序結構
C語言是一種高級程序設計語言,提供了十分完備的規范化流程式控制制結構。因此在採用C語言設計單片機應用系統程序時,首先要注意盡可能採用結構化的程序設計方法,這樣可使整個應用系統程序結構清晰,便於調試和維護。於一個較大的應用程序,通常將整個程序按功能分成若干個模塊,不同模塊完成不同的功能。各個模塊可以分別編寫,甚至還可以由不同的程序員編寫,一般單個模塊完成的功能較為簡單,設計和調試也相對容易一些。在C語言中,一個函數就可以認為是一個模塊。所謂程序模塊化,不僅是要將整個程序劃分成若干個功能模塊,更重要的是,還應該注意保持各個模塊之間變數的相對獨立性,即保持模塊的獨立性,盡量少使用全局變數等。對於一些常用的功能模塊,還可以封裝為一個應用程序庫,以便需要時可以直接調用。但是在使用模塊化時,如果將模塊分成太細太小,又會導致程序的執行效率變低(進入和退出一個函數時保護和恢復寄存器佔用了一些時間)。
4、定義常數
在程序化設計過程中,對於經常使用的一些常數,如果將它直接寫到程序中去,一旦常數的數值發生變化,就必須逐個找出程序中所有的常數,並逐一進行修改,這樣必然會降低程序的可維護性。因此,應盡量當採用預處理命令方式來定義常數,而且還可以避免輸入錯誤。
5、減少判斷語句
能夠使用條件編譯(ifdef)的地方就使用條件編譯而不使用if語句,有利於減少編譯生成的代碼的長度,能夠不用判斷語句則少用判斷用語句。
6、表達式
對於一個表達式中各種運算執行的優先順序不太明確或容易混淆的地方,應當採用圓括弧明確指定它們的優先順序。一個表達式通常不能寫得太復雜,如果表達式太復雜,時間久了以後,自己也不容易看得懂,不利於以後的維護。
7、函數
對於程序中的函數,在使用之前,應對函數的類型進行說明,對函數類型的說明必須保證它與原來定義的函數類型一致,對於沒有參數和沒有返回值類型的函數應加上「void」說明。如果果需要縮短代碼的長度,可以將程序中一些公共的程序段定義為函數,在Keil中的高級別優化就是這樣的。如果需要縮短程序的執行時間,在程序調試結束後,將部分函數用宏定義來代替。注意,應該在程序調試結束後再定義宏,因為大多數編譯系統在宏展開之後才會報錯,這樣會增加排錯的難度。
8、盡量少用全局變數,多用局部變數。
因為全局變數是放在數據存儲器中,定義一個全局變數,MCU就少一個可以利用的數據存儲器空間,如果定義了太多的全局變數,會導致編譯器無足夠的內存可以分配。而局部變數大多定位於MCU內部的寄存器中,在絕大多數MCU中,使用寄存器操作速度比數據存儲器快,指令也更多更靈活,有利於生成質量更高的代碼,而且局部變數所的佔用的寄存器和數據存儲器在不同的模塊中可以重復利用。
9、設定合適的編譯程序選項
許多編譯程序有幾種不同的優化選項,在使用前應理解各優化選項的含義,然後選用最合適的一種優化方式。通常情況下一旦選用最高級優化,編譯程序會近乎病態地追求代碼優化,可能會影響程序的正確性,導致程序運行出錯。因此應熟悉所使用的編譯器,應知道哪些參數在優化時會受到影響,哪些參數不會受到影響。
在ICCAVR中,有「Default」和「Enable Code Compression」兩個優化選項。
在CodeVisionAVR中,「Tiny」和「small」兩種內存模式。
在IAR中,共有7種不同的內存模式選項。
在GCCAVR中優化選項更多,一不小心更容易選到不恰當的選項。
二、代碼的優化
1、選擇合適的演算法和數據結構
應該熟悉演算法語言,知道各種演算法的優缺點,具體資料請參見相應的參考資料,有很多計算機書籍上都有介紹。將比較慢的順序查找法用較快的二分查找或亂序查找法代替,插入排序或冒泡排序法用快速排序、合並排序或根排序代替,都可以大大提高程序執行的效率。.選擇一種合適的數據結構也很重要,比如你在一堆隨機存放的數中使用了大量的插入和刪除指令,那使用鏈表要快得多。
數組與指針語句具有十分密碼的關系,一般來說,指針比較靈活簡潔,而數組則比較直觀,容易理解。對於大部分的編譯器,使用指針比使用數組生成的代碼更短,執行效率更高。但是在Keil中則相反,使用數組比使用的指針生成的代碼更短。。
3、使用盡量小的數據類型
能夠使用字元型(char)定義的變數,就不要使用整型(int)變數來定義;能夠使用整型變數定義的變數就不要用長整型(long int),能不使用浮點型(float)變數就不要使用浮點型變數。當然,在定義變數後不要超過變數的作用范圍,如果超過變數的范圍賦值,C編譯器並不報錯,但程序運行結果卻錯了,而且這樣的錯誤很難發現。
在ICCAVR中,可以在Options中設定使用printf參數,盡量使用基本型參數(%c、%d、%x、%X、%u和%s格式說明符),少用長整型參數(%ld、%lu、%lx和%lX格式說明符),至於浮點型的參數(%f)則盡量不要使用,其它C編譯器也一樣。在其它條件不變的情況下,使用%f參數,會使生成的代碼的數量增加很多,執行速度降低。
4、使用自加、自減指令
通常使用自加、自減指令和復合賦值表達式(如a-=1及a+=1等)都能夠生成高質量的程序代碼,編譯器通常都能夠生成inc和dec之類的指令,而使用a=a+1或a=a-1之類的指令,有很多C編譯器都會生成二到三個位元組的指令。在AVR單片適用的ICCAVR、GCCAVR、IAR等C編譯器以上幾種書寫方式生成的代碼是一樣的,也能夠生成高質量的inc和dec之類的的代碼。
5、減少運算的強度
可以使用運算量小但功能相同的表達式替換原來復雜的的表達式。如下:
(1)、求余運算。
a=a%8;
可以改為:
a=a&7;
說明:位操作只需一個指令周期即可完成,而大部分的C編譯器的「%」運算均是調用子程序來完成,代碼長、執行速度慢。通常,只要求是求2n方的余數,均可使用位操作的方法來代替。
(2)、平方運算
a=pow(a,2.0);
可以改為:
a=a*a;
說明:在有內置硬體乘法器的單片機中(如51系列),乘法運算比求平方運算快得多,因為浮點數的求平方是通過調用子程序來實現的,在自帶硬體乘法器的AVR單片機中,如ATMega163中,乘法運算只需2個時鍾周期就可以完成。既使是在沒有內置硬體乘法器的AVR單片機中,乘法運算的子程序比平方運算的子程序代碼短,執行速度快。
如果是求3次方,如:
a=pow(a,3.0);
更改為:
a=a*a*a;
則效率的改善更明顯。
(3)、用移位實現乘除法運算
a=a*4;
b=b/4;
可以改為:
a=a<<2;
b=b>>2;
說明:通常如果需要乘以或除以2n,都可以用移位的方法代替。在ICCAVR中,如果乘以2n,都可以生成左移的代碼,而乘以其它的整數或除以任何數,均調用乘除法子程序。用移位的方法得到代碼比調用乘除法子程序生成的代碼效率高。實際上,只要是乘以或除以一個整數,均可以用移位的方法得到結果,如:
a=a*9
可以改為:
a=(a<<3)+a
6、循環
(1)、循環語
對於一些不需要循環變數參加運算的任務可以把它們放到循環外面,這里的任務包括表達式、函數的調用、指針運算、數組訪問等,應該將沒有必要執行多次的操作全部集合在一起,放到一個init的初始化程序中進行。
(2)、延時函數:
通常使用的延時函數均採用自加的形式:
void delay (void)
{
unsigned int i;
for (i=0;i<1000;i++)
;
}
將其改為自減延時函數:
void delay (void)
{
unsigned int i;
for (i=1000;i>0;i--)
;
}
兩個函數的延時效果相似,但幾乎所有的C編譯對後一種函數生成的代碼均比前一種代碼少1~3個位元組,因為幾乎所有的MCU均有為0轉移的指令,採用後一種方式能夠生成這類指令。
在使用while循環時也一樣,使用自減指令控制循環會比使用自加指令控制循環生成的代碼更少1~3個字母。
但是在循環中有通過循環變數「i」讀寫數組的指令時,使用預減循環時有可能使數組超界,要引起注意。
(3)while循環和do…while循環
用while循環時有以下兩種循環形式:
unsigned int i;
i=0;
while (i<1000)
{
i++;
//用戶程序
}
或:
unsigned int i;
i=1000;
do
i--;
//用戶程序
while (i>0);
在這兩種循環中,使用do…while循環編譯後生成的代碼的長度短於while循環。
7、查表
在程序中一般不進行非常復雜的運算,如浮點數的乘除及開方等,以及一些復雜的數學模型的插補運算,對這些即消耗時間又消費資源的運算,應盡量使用查表的方式,並且將數據表置於程序存儲區。如果直接生成所需的表比較困難,也盡量在啟動時先計算,然後在數據存儲器中生成所需的表,後以在程序運行直接查表就可以了,減少了程序執行過程中重復計算的工作量。
8. 應用編譯優化有什麼用
應用編譯優化的作用是:提高運行能力因為程序優化前,有3個變數需要3個寄存器,一次乘法運算。程序優化後,只有1個變數需要一個寄存器,沒有乘法運算。
並且這個優化看起來很微不足道,但實際上用途很廣。為了程序的可讀性和可維護性,大多數程序員應該還是會選用第一種方式。
寫3行程序而不是直接甩下一行int ticks = 491520讓後來讀程序的人摸不到頭腦。有了編譯器的優化,程序員既可以寫出易讀的程序又不必擔心性能受影響。
尤其是在嵌入式領域,很多低端晶元根本就沒有硬體乘法器,如果程序不做上述優化可能這3行代碼需要幾十個cycle,優化過後一個cycle就搞定。
應用編譯優化的級別:
第一級:代碼調整。
代碼調整是一種局部的思維方式;基本上不觸及演算法層級;它面向的是代碼,而不是問題; 所以:語句調整,用匯編重寫、指令調整、換一種語言實現、換一個編譯器、循環展開、參數傳遞優化等都屬於這一級。
第二級:新的視角。
新的視角強調的重點是針對問題的演算法;即選擇和構造適合於問題的演算法。
第三級:表驅動狀態機。
將問題抽象為另一種等價的數學模型或假想機器模型,比如構造出某種表驅動狀態機;這一級其實是第二級的延伸,只是產生的效果更加明顯,但它有其本身的特點。
9. C語言文件的編譯與執行的四個階段並分別描述
開發C程序有四個步驟:編輯、編譯、連接和運行。
任何一個體系結構處理器上都可以使用C語言程序,只要該體系結構處理器有相應的C語言編譯器和庫,那麼C源代碼就可以編譯並連接到目標二進制文件上運行。
1、預處理:導入源程序並保存(C文件)。
2、編譯:將源程序轉換為目標文件(Obj文件)。
3、鏈接:將目標文件生成為可執行文件(EXE文件)。
4、運行:執行,獲取運行結果的EXE文件。
(9)優化編譯指令擴展閱讀:
將C語言代碼分為程序的幾個階段:
1、首先,源代碼文件測試。以及相關的頭文件,比如stdio。H、由預處理器CPP預處理為.I文件。預編譯的。文件不包含任何宏定義,因為所有宏都已展開,並且包含的文件已插入。我歸檔。
2、編譯過程是對預處理文件進行詞法分析、語法分析、語義分析和優化,生成相應的匯編代碼文件。這個過程往往是整個程序的核心部分,也是最復雜的部分之一。
3、匯編程序不直接輸出可執行文件,而是輸出目標文件。匯編程序可以調用LD來生成可以運行的可執行程序。也就是說,您需要鏈接大量的文件才能獲得「a.out」,即最終的可執行文件。
4、在鏈接過程中,需要重新調整其他目標文件中定義的函數調用指令,而其他目標文件中定義的變數也存在同樣的問題。
10. C語言的按照標識符、關鍵字、常用編譯指令有哪些
我們可以在C源程序中插入傳給編譯程序的各中指令,這些指令被稱為預處理器指令,它們擴充了程序設計的環境。現把常用的預處理命令總結如下:
1. 預處理程序
按照ANSI標準的定義,預處理程序應該處理以下指令:
#if #ifdef #ifndef #else #elif
#endif
#define
#undef
#line
#error
#pragma
#include
顯然,上述所有的12個預處理指令都以符號#開始,,每條預處理指令必須獨佔一行。
2. #define
#define指令定義一個標識符和一個串(也就是字元集),在源程序中發現該標識符時,都用該串替換之。這種標識符稱為宏名字,相應的替換稱為宏代換。一般形式如下:
#define macro-name char-sequence
這種語句不用分號結尾。宏名字和串之間可以有多個空白符,但串開始後只能以新行終止。
例如:我們使用LEFT代表1,用RIGHT代表0,我們使用兩個#define指令:
#define LEFT 1
#define RIGHT 0
每當在源程序中遇到LEFT或RIGHT時,編譯程序都用1或0替換。
定義一個宏名字之後,可以在其他宏定義中使用,例如:
#define ONE 1
#define TWO ONE+ONE
#define THREE ONE+TWO
宏代換就是用相關的串替代標識符。因此,如果希望定義一條標准錯誤信息時,可以如下定義:
#define ERROR_MS 「Standard error on input \n」
如果一個串長於一行,可在行尾用反斜線」\」續行,如下:
#define LONG_STRING 「This is a very very long \
String that is used as an example」
3. #error
#error指令強制編譯程序停止編譯,它主要用於程序調試。#error指令的一般形式是:
#error error-message
注意,宏串error-message不用雙引號包圍。遇到#error指令時,錯誤信息被顯示,可能同時還顯示編譯程序作者預先定義的其他內容。
4. #include
程序中的#include指令要求編譯程序讀入另一個源文件。被讀入文件的名字必須用雙引號(「」)或一對尖括弧(<>)包圍,例如:
#include 「stdio.h」
#include <stdio.h>
都使C編譯程序讀入並編譯頭文件以用於I/O系統庫函數。
包含文件中可以包含其他#include指令,稱為嵌套包含。允許的最大嵌套深度隨編譯器而變。
文件名被雙括弧或尖括弧包圍決定了對指定文件的搜索方式。文件名被尖括弧包圍時,搜索按編譯程序作者的定義進行,一般用於搜索某些專門放置包含文件的特殊目錄。當文件名被雙括弧包圍時,搜索按編譯程序實時的規定進行,一般搜索當前目錄。如未發現,再按尖括弧包圍時的辦法重新搜索一次。
通常,絕大多數程序員使用尖括弧包圍標準的頭文件,雙引號用於包圍與當前程序相關的文件名。
5. 條件編譯指令
若干編譯指令允許程序員有選擇的編譯程序源代碼的不同部分,這種過程稱為條件編譯。
5.1#if、#else、#elif #endif
條件編譯指令中最常用的或許是#if,#else,#elif和#endif。這些指令允許程序員根據常數表達式的結果有條件的包圍部分代碼。
#if的一般形式是:
#if constant-expression
Statement sequence
#endif
如#if後的常數表達式為真,則#if和#endif中間的代碼被編譯,否則忽略該代碼段。#endif標記#if塊的結束。
#else指令的作用與C語言的else相似,#if指令失敗時它可以作為備選指令。例如:
#include <stdio.h>
#define MAX 100
Int main(void)
{
#if MAX>99
printf(「Compiled for array greater than 99.\n」);
#else
printf(「Complied for small array.\n」);
#endif
return 0;
}