A. 尋一個用matlab編的蟻群演算法程序。要求:帶螞蟻尋找最佳路徑過程演示的界面
figure;
x=[2005 2006 2007 2008 2009 2010];
y2=[45906 53809 63184 72123 81941 88833];
a=polyfit(x,y2,1);
xi=2005:1:2010;
yi=polyval(a,xi);
plot(x,y2,'go','MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',6);
xlabel('年份');
ylabel('GDP');
axis([2005 2010 45000 90000])
hold on
plot(xi,yi,'linewidth',2,'markersize',16)
legend('原始數據點','擬合曲線')
plot(x,y2,'-r.')
sprintf('直線方程:Y2=%0.5g*X+(%0.5g)',a(1),a(2))
B. matlab蟻群演算法路徑優化
你用D保存了隨機點,D的標號就是對應隨機點
C. 數學建模里matlab求蟻群演算法求解旅遊路線最短的問題
你可以去查查怎麼解決
D. 用VB或者MATLAB在一個矩形內生成一個固定點和幾個隨機點,再求出從固定點經過所有隨機點回來後的最短路徑
這個並非一般的最短路徑問題,而是旅行商問題(Traveling Saleman Problem,TSP)。旅行商問題屬於NP完全問題,如果問題規模比較大,至今沒有太有效的演算法。
這里提供一個蟻群演算法的程序,參考:
http://..com/question/175608123.html
根據你的問題做了少量改動,具體代碼如下:
functionTSP
%TSP旅行商問題
%設置初始參數如下:
m=10;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;
%生成隨機點,第一個點視為固定點
C=[0.50.5];
C(2:10,:)=rand(9,2);
%調用蟻群演算法求解
[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q);
function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%%ACATSP.m
%%
%%ChengAihua,,ZhengZhou,China
%%Email:[email protected]
%%Allrightsreserved
%%-------------------------------------------------------------------------
%%主要符號說明
%%Cn個城市的坐標,n×2的矩陣
%%NC_max最大迭代次數
%%m螞蟻個數
%%Alpha表徵信息素重要程度的參數
%%Beta表徵啟發式因子重要程度的參數
%%Rho信息素蒸發系數
%%Q信息素增加強度系數
%%R_best各代最佳路線
%%L_best各代最佳路線的長度
%%=========================================================================
%%第一步:變數初始化
n=size(C,1);%n表示問題的規模(城市個數)
D=zeros(n,n);%D表示完全圖的賦權鄰接矩陣
fori=1:n
forj=1:n
ifi~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta為啟發因子,這里設為距離的倒數
Tau=ones(n,n);%Tau為信息素矩陣
Tabu=zeros(m,n);%存儲並記錄路徑的生成
NC=1;%迭代計數器
R_best=zeros(NC_max,n);%各代最佳路線
L_best=inf.*ones(NC_max,1);%各代最佳路線的長度
L_ave=zeros(NC_max,1);%各代路線的平均長度
whileNC<=NC_max%停止條件之一:達到最大迭代次數
%%第二步:將m只螞蟻放到n個城市上
Randpos=[];
fori=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%%第三步:m只螞蟻按概率函數選擇下一座城市,完成各自的周遊
forj=2:n
fori=1:m
visited=Tabu(i,1:(j-1));%已訪問的城市
J=zeros(1,(n-j+1));%待訪問的城市
P=J;%待訪問城市的選擇概率分布
Jc=1;
fork=1:n
iflength(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面計算待選城市的概率分布
fork=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原則選取下一個城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
ifNC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:記錄本次迭代最佳路線
L=zeros(m,1);
fori=1:m
R=Tabu(i,:);
forj=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1
%%第五步:更新信息素
Delta_Tau=zeros(n,n);
fori=1:m
forj=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
%%第六步:禁忌表清零
Tabu=zeros(m,n);
end
%%第七步:輸出結果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
%繪圖顯示結果
clf
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
holdon
plot(L_ave)
functionDrawRoute(C,R)
%%=========================================================================
%%DrawRoute.m
%%畫路線圖的子函數
%%-------------------------------------------------------------------------
%%CCoordinate節點坐標,由一個N×2的矩陣存儲
%%RRoute路線
%%=========================================================================
%原來的繪圖語句太繁瑣,改用這一句就可以了
plot(C([RR(1)],1),C([RR(1)],2),'o-')
%標明固定點
holdon
plot(C(1,1),C(1,2),'ro')
由於點是隨機生成的,每次運行的結果都不同,下面是某次運行的結果(紅點為固定點)。
E. 請問這段matlab程序是否有錯誤,在編程中完整的程序是什麼 蟻群演算法最短路徑通用MATLAB程序 下面的程序是
;
F. 求教:蟻群演算法選擇最短路徑問題
這個例子其實是當初數模比賽時用來完成碎片拼接的,但其所用到原理還是求解最短路徑的原理。但這里的最短路徑和數據結構中最短路徑有一定的區別。在數據結構中,對於最短路徑的求解常用的一般有Dijkstra演算法與Floyd演算法,但對於要求出一條經過所有的點的並且要求路徑最短,這些演算法還是有一定的局限性的。而蟻群演算法則很好地滿足了這些條件。話說回來,很想吐槽一下網路流傳的一些蟻群演算法的例子,當初學習這個時候,身邊也沒有相關的書籍,只好到網上找例子。網上關於這個演算法源代碼的常見的有2個版本,都是出自博客,但是在例子都代碼是不完整的,缺失了一部分,但就是這樣的例子,居然流傳甚廣,我很好奇那些轉載這些源碼的人是否真的有去學習過這些,去調試過。當然,我下面的例子也是無法直接編譯通過的,因為涉及到圖像讀取處理等方面的東西,所以就只貼演算法代碼部分。但是對於這個問題蟻群演算法有一個比較大的缺點,就是收斂很慢,不過對於數量小的路徑,效果還是很好的。function bestqueue =aco1(nt,nc_max,m ,st, sd ,Alpha ,Beta ,Rho ,Q,gethead,getend)%參數解釋:%nt 路徑所經過的點的個數;%nc_max 迭代的次數;%m 螞蟻的個數;%st 起點序號;%sd 終點序號;%Alpha 信息素系數;�ta 啟發因子系數;%Rho 蒸發系數;% Q 信息量;%gethead getend 是用來求距離矩陣的,可根據實際情況修改
% nt = 209;%碎片個數full = zeros(nt,nt);tic;%初始化距離矩陣for i =1:nt for t = 1:nt if i ~= t full(i,t) = sum(abs(getend(:,i) - gethead(:,t))); else full(i,t) = inf; end endend% a =full(156,187)eta = 1./full;%啟發因子,取距離的倒數% eta% e = eta(4,2)tau = ones(nt,nt);%信息素矩陣% tabu = zeros(nt,nt);%禁忌矩陣,取螞蟻數量和碎片數量一致,以減少迭代次數nc =1;%初始化迭代次數;rbest=zeros(nc_max,nt);%各代最佳路線rbest(:,1) = (linspace(st,st,nc_max))';rbest(:,nt) =(linspace(sd,sd,nc_max))'; lbest=zeros(nc_max,1);%各代最佳路線的長度pathlen = 0;%臨時記錄每代最佳路線長度stime = 1;%記錄代數進度for i = 1:nc_max % 代數循環 delta_tau=zeros(nt,nt);%初始化改變數 stime for t = 1:m % 對螞蟻群體的循環, tabu=zeros(1,nt);%禁忌向量,標記已訪問的碎片,初試值設為0,訪問之後則變為1; viseted = zeros(1,nt);%記錄已訪問的元素的位置 tabu(st) = 1;%st為起點,在此表示為碎片矩陣的編號,因為已經將蟻群放在起點,故也應將禁忌向量和位置向量的狀態進行修改 tabu(sd) =1;%同上 visited(nt) = sd ;%同上; visited(1) = st;%同上; ht = 0; for r = 2:nt-1 %記錄了還沒訪問的圖片編號 vp = 1;%visited指示量 pp = [];%置空的概率向量 jc = 0; %獲取尚未訪問的位置的向量。 wv = zeros( nt -2 - ht ); for k =1 : nt if tabu(k) == 0 jc = jc +1; wv(jc) = k; end end% a =(tau(visited(end),ju(3))^Alpha)*(eta(visited(end),ju(3))^Beta)% visited(end) %計算選擇的概率 for k=1:length(wv) pp(k)=(tau(visited(vp),wv(k))^Alpha)*(eta(visited(vp),wv(k))^Beta);%下一張碎片的選擇概率計算,p =(信息素^信息素系數)*(啟發因子^啟發因子系數) end pp=pp./(sum(pp));%歸一化 pcum =cumsum(pp); psl = find(pcum >= rand);%輪盤賭法 to_visit= wv(psl(1)) ;%完成選點 tabu(to_visit) =1; visited(r) = to_visit; ht =ht +1;%已訪問碎片個數變化 vp =vp+1; end %路徑變化信息 %對單個螞蟻的路徑進行統計 sum1 =0; for pr = 1:nt -1 x = visited(pr); y = visited(pr+1) ; sum1 =sum1 + full(x,y); end% vcell{t} =visited;%元胞記錄每個螞蟻的路徑,即碎片順序;% msum(t) = sum1; %信息素變化; for ww=1:(nt-1) delta_tau(visited(ww),visited(ww+1))=delta_tau(visited(ww),visited(ww+1)) + Q/sum1; end% delta_tau(visited(end),visited(1))=delta_tau(visited(end),visited(1))+Q/(sum1/100);% if t == m & i == nc_max % bestqueue = visited% end if t == m bestqueue = visited end end tau=(1-Rho).*tau+delta_tau; %完成信息素的更新,找出現有的最新的最佳路徑,即信息素最多的路徑; stime =stime +1;end toc;