A. matlab的遺傳演算法優化BP神經網路
對y=x1^2+x2^2非線性系統進行建模,用1500組數據對網路進行構建網路,500組數據測試網路。由於BP神經網路初始神經元之間的權值和閾值一般隨機選擇,因此容易陷入局部最小值。本方法使用遺傳演算法優化初始神經元之間的權值和閾值,並對比使用遺傳演算法前後的效果。
步驟:
未經遺傳演算法優化的BP神經網路建模
1、
隨機生成2000組兩維隨機數(x1,x2),並計算對應的輸出y=x1^2+x2^2,前1500組數據作為訓練數據input_train,後500組數據作為測試數據input_test。並將數據存儲在data中待遺傳演算法中使用相同的數據。
2、
數據預處理:歸一化處理。
3、
構建BP神經網路的隱層數,次數,步長,目標。
4、
使用訓練數據input_train訓練BP神經網路net。
B. 如何用matlab解決多元遺傳演算法問題
如何用matlab解決多元遺傳演算法的極值問題?可以按下列步驟做
1、首先,建立自定義帶條件的最大值目標函數文件,ga_fun.m
if x(1)+x(2)>=-1
y=-(exp(-0.1*(x(1)^4+x(2)^4))+ exp(cos(2*pi*x(1))+cos(2*pi*x(2)))
)
else
y=inf
end
式中:x=x(1),y=x(2)
2、利用ga遺傳演算法工具箱求解
3、在工具箱中,Fitness function項輸入@ga_fun;Number of variables項輸入2;Lower項輸入[-1,2];Upper項輸入[2,1];
4、點擊Start按鈕,運行可以得到 fmax(0,0)值(Objective function value)。說明這里負號是最大值的標志
運行界面
C. Matlab問題--如何用遺傳演算法優化BP神經網路這篇文獻(中文)是如何做的
我上次發給你的程序,只要你從網上下一個matcom45就行了,直接裝在c盤就可以了,你發給我的論文變數太多用一般的遺傳演算法不行,我從網上發現了一個PID神經網路,相當好用,不用計算隱層數目,很適合用遺傳演算法進行優化,我編了一個常式回來發給你。
我真的不會用matlab的工具箱,如果一定要用matlab來做優化,恐怕我幫不了你了。
為什麼一定要用matlab,用C++自己編寫不也很好嗎?
D. 基於Matlab的函數優化遺傳演算法程序
新建一個函數
_f.m
function
f=_f(x)
f=0.5-((sin(sqrt(x(1)^2+x(2)^2)))^2-0.5)/(1+0.001*(x(1)^2+x(2)^2)^2)
然後用fmins函數尋找極值。
x
=
fmins('_f',
[0
0],
[2
2]);
另外你的語句中有錯,少寫了一個括弧,你再自己檢查一下。
E. 遺傳演算法的matlab代碼實現是什麼
遺傳演算法我懂,我的論文就是用著這個演算法,具體到你要遺傳演算法是做什麼?優化什麼的。。。我給你一個標准遺傳演算法程序供你參考:
該程序是遺傳演算法優化BP神經網路函數極值尋優:
%% 該代碼為基於神經網路遺傳演算法的系統極值尋優
%% 清空環境變數
clc
clear
%% 初始化遺傳演算法參數
%初始化參數
maxgen=100; %進化代數,即迭代次數
sizepop=20; %種群規模
pcross=[0.4]; %交叉概率選擇,0和1之間
pmutation=[0.2]; %變異概率選擇,0和1之間
lenchrom=[1 1]; %每個變數的字串長度,如果是浮點變數,則長度都為1
bound=[-5 5;-5 5]; %數據范圍
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %將種群信息定義為一個結構體
avgfitness=[]; %每一代種群的平均適應度
bestfitness=[]; %每一代種群的最佳適應度
bestchrom=[]; %適應度最好的染色體
%% 初始化種群計算適應度值
% 初始化種群
for i=1:sizepop
%隨機產生一個種群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%計算適應度
indivials.fitness(i)=fun(x); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[avgfitness bestfitness];
%% 迭代尋優
% 進化開始
for i=1:maxgen
i
% 選擇
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:); %解碼
indivials.fitness(j)=fun(x);
end
%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束
%% 結果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('適應度曲線','fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('適應度','fontsize',12);
axis([0,100,0,1])
disp('適應度 變數');
x=bestchrom;
% 窗口顯示
disp([bestfitness x]);
F. 遺傳演算法改進的模糊C-均值聚類MATLAB源碼範例
function [BESTX,BESTY,ALLX,ALLY]=GAFCM(K,N,Pm,LB,UB,D,c,m)
%% 此函數實現遺傳演算法,用於模糊C-均值聚類
%% 輸入參數列表
% K 迭代次數
% N 種群規模,要求是偶數
% Pm 變異概率
% LB 決策變數的下界,M×1的向量
% UB 決策變數的上界,M×1的向量
% D 原始樣本數據,n×p的矩陣
% c 分類個數
% m 模糊C均值聚類數學模型中的指數
%% 輸出參數列表
% BESTX K×1細胞結構,每一個元素是M×1向量,記錄每一代的最優個體
% BESTY K×1矩陣,記錄每一代的最優個體的評價函數值
% ALLX K×1細胞結構,每一個元素是M×N矩陣,記錄全部個體
% ALLY K×N矩陣,記錄全部個體的評價函數值
%% 第一步:
M=length(LB);%決策變數的個數
%種群初始化,每一列是一個樣本
farm=zeros(M,N);
for i=1:M
x=unifrnd(LB(i),UB(i),1,N);
farm(i,:)=x;
end
%輸出變數初始化
ALLX=cell(K,1);%細胞結構,每一個元素是M×N矩陣,記錄每一代的個體
ALLY=zeros(K,N);%K×N矩陣,記錄每一代評價函數值
BESTX=cell(K,1);%細胞結構,每一個元素是M×1向量,記錄每一代的最優個體
BESTY=zeros(K,1);%K×1矩陣,記錄每一代的最優個體的評價函數值
k=1;%迭代計數器初始化
%% 第二步:迭代過程
while k<=K
%% 以下是交叉過程
newfarm=zeros(M,2*N);
Ser=randperm(N);%兩兩隨機配對的配對表
A=farm(:,Ser(1));
B=farm(:,Ser(2));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];%產生子代a
b=[B(1:P0,:);A((P0+1):end,:)];%產生子代b
newfarm(:,2*N-1)=a;%加入子代種群
newfarm(:,2*N)=b;???
for i=1:(N-1)
A=farm(:,Ser(i));
B=farm(:,Ser(i+1));
P0=unidrnd(M-1);
a=[A(1:P0,:);B((P0+1):end,:)];
b=[B(1:P0,:);A((P0+1):end,:)];
newfarm(:,2*i-1)=a;
newfarm(:,2*i)=b;
end
FARM=[farm,newfarm];
%% 選擇復制
SER=randperm(3*N);
FITNESS=zeros(1,3*N);
fitness=zeros(1,N);
for i=1:(3*N)
Beta=FARM(:,i);
FITNESS(i)=FIT(Beta,D,c,m);
end
for i=1:N
f1=FITNESS(SER(3*i-2));
f2=FITNESS(SER(3*i-1));
f3=FITNESS(SER(3*i));
if f1<=f2&&f1<=f3
farm(:,i)=FARM(:,SER(3*i-2));
fitness(:,i)=FITNESS(:,SER(3*i-2));
elseif f2<=f1&&f2<=f3
farm(:,i)=FARM(:,SER(3*i-1));
fitness(:,i)=FITNESS(:,SER(3*i-1));
else
farm(:,i)=FARM(:,SER(3*i));
fitness(:,i)=FITNESS(:,SER(3*i));
end
end
%% 記錄最佳個體和收斂曲線
X=farm;
Y=fitness;
ALLX{k}=X;
ALLY(k,:)=Y;
minY=min(Y);
pos=find(Y==minY);
BESTX{k}=X(:,pos(1));
BESTY(k)=minY;???
%% 變異
for i=1:N
if Pm>rand&&pos(1)~=i
AA=farm(:,i);
BB=GaussMutation(AA,LB,UB);
farm(:,i)=BB;
end
end
disp(k);
k=k+1;
end
%% 繪圖
BESTY2=BESTY;
BESTX2=BESTX;
for k=1:K
TempY=BESTY(1:k);
minTempY=min(TempY);
posY=find(TempY==minTempY);
BESTY2(k)=minTempY;
BESTX2{k}=BESTX{posY(1)};
end
BESTY=BESTY2;
BESTX=BESTX2;
plot(BESTY,'-ko','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',2)
ylabel('函數值')
xlabel('迭代次數')
grid on
忘記寫了,這個是源代碼!謝謝謝謝!
G. matlab遺傳演算法改進bp神經網路
你提供的代碼是一個基本的BP神經網路訓練過程。一般都是用GA訓練,之後再用改進動量法繼續訓練,直至最後達到目標。
遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。
H. matlab上的遺傳演算法函數優化
用ga函數,ga函數就是遺傳演算法的函數,它的調用格式為:
x
=
ga(fitnessfcn,nvars,a,b,aeq,beq,lb,ub,nonlcon,options)
fitnessfcn就是待優化函數,nvars為變數個數,然後後面的lb是下界,ub是上界,你這個問題就需要這4個位置的參數,其他位置的參數用[]代替就行,由於ga函數默認是求待優化函數的最小值,所以要想求最大值需要把待優化函數取負,即編寫為
function
y=myfun(x)
y=-x.*sin(10*pi.*x)-2;
把這個函數存為myfun.m,然後在命令行里敲
x=ga(@myfun,1,[],[],[],[],[1],[2])
會返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.8506
由於遺傳演算法的原理其實是在取值范圍內隨機選擇初值然後進行遺傳,所以可能每次運行給出的值都不一樣,比如再運行一次會返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.6507
這個具體原因需要參考遺傳演算法的有關資料
I. 遺傳演算法優化概率神經網路的matlab代碼
原理大概是,設置一個初始種群,種群里的個體就是平滑因子,經過遺傳演算法的選擇、交叉、變異後,逐漸找到一個最佳的spread,即為最終結果。
附件是一個GA-BP演算法的程序,雖然不同,但是原理是相近的,可以參考。
遺傳演算法的基本運算過程如下:
a)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。
b)個體評價:計算群體P(t)中各個個體的適應度。
c)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。
d)交叉運算:將交叉運算元作用於群體。遺傳演算法中起核心作用的就是交叉運算元。
e)變異運算:將變異運算元作用於群體。即是對群體中的個體串的某些基因座上的基因值作變動。
群體P(t)經過選擇、交叉、變異運算之後得到下一代群體P(t+1)。
f)終止條件判斷:若t=T,則以進化過程中所得到的具有最大適應度個體作為最優解輸出,終止計算。
J. 使用matlab遺傳演算法工具箱能不能解決組合優化問題還有使用工具箱方便還是自己編程方便呢
1、要看你組合優化是屬於哪種問題,一般的組合優化都是混合整數線性或非線性的,那麼就不行了,因此要對遺傳演算法改進才能計算。
2、如果有現成的工具箱求解你的組合優化問題肯定要方便些,但碰到具體問題,可能要對參數進行一些設置更改,所以最好能有編程基礎,那樣就可以自己修改工具箱裡面的參數或策略了
對你的補充問題,組合優化問題一般都是用matlab 和 lingo實現吧。建議買一本數學建模的書看一看,都涉及到組合優化問題,也可以下載論文看看。lingo對編程要簡單些,主要是求混合規劃,缺點是似乎還不能用上多目標問題,一般的組合優化都屬於多目標問題。但是matlab功能強大的多。