Ⅰ 有沒有《數學的奇妙》的簡介
《數學的奇妙》是1999年4月1日由上海科技教育出版社出版的圖書,作者是西奧妮﹒帕帕斯(美)。
你不必去解算數學題,更不必成為一名數學家,就可以發現數學的奇妙。本書收集了一些想法,一些都有其潛在的數學主題的想法。它不是一本教科書。你不會對某個論題變得精通,也不會發現某種想法已經窮盡無遺。《數學的奇妙》在這些想法的世界中探究,揭示數學的魅力對我們生活的影響,並幫助你在你最想不到的地方去發現數學。 很多人認為數學是一門嚴格的一成不變的課程。任何事情都不能脫離事實。人類的大腦不斷地創造著數學思想和獨立於我們世界的迷人的新世界,並且這些思想立刻與我們的世界聯系起來,幾乎就像有人揮動過魔杖一般。某一維中的對象是如何消失在另一維中的,任何兩點之間怎麼總能找到一個新的點,數是怎樣運算的,方程是怎樣解出的,坐標如何產生圖像,如何用無窮解題,公式如何生成——所有這些似乎都具有一種奇妙的性質。 數學思想是想像力的虛構物。數學的想法存在於另一世界中,數學的對象是純由邏輯和創造力產生的。標準的正方形或圓形存在於數學世界中,而我們的世界所具有的只是數學對象的代表物而已。 每一章中所述的論題和概念絕非專屬所在章節。相反,所舉的各個例子很容易越出各章主觀設定的邊界。即使一種數學思想可能局限於一個特定的領域,人們也並不希望如此。每一論題基本上是獨立的,都可以單獨賞閱。我希望本書將成為踏入數學世界的墊腳石。
Ⅱ 《奇妙數學史數字與生活》pdf下載在線閱讀全文,求百度網盤雲資源
《奇妙數學史數字與生活》網路網盤pdf最新全集下載:
鏈接:https://pan..com/s/15br2ViINDgqUMGdLNrTqGg
Ⅲ 數學的奇妙之處
令這個數為X則[(x+52.8)* 5-3.9343]除以0.5—10x 也就是10x+52.8 * 10 —3.9343 * 2 —10x顯然任何數都一樣
Ⅳ 有沒有 《奇妙數學大世界A》電子版書籍百度雲下載
奇妙數學大世界A.pdf
鏈接:https://pan..com/s/1Je3_lgQc143BQ3T_u5daQA
Ⅳ 哪位大佬有 《奇妙數學大世界B》電子版書籍百度網盤資源下載
奇妙數學大世界B.pdf
鏈接:https://pan..com/s/1Pfb8AbYjQ-sm-Pugh8tXyg
Ⅵ 有沒有數學的奇妙的簡介
首先,你每天吃飯,要買菜,對不對?買菜要付錢,對不對?付錢要用到數學,對不對還有,你在玩的時候會看到小螞蟻啊,什麼的,就要數對不對? 另外,你每天要看時間,每天你可以計算一下睡覺時間充不充足,你又要用到數學了,對不對
Ⅶ 數學是音樂之父,沒有數學就沒有音樂。在琴弦上你就會發現數學的奇妙,長度不同的弦發出不同的奇妙的聲音
在這一輪課程改革中,「數學與文化」成為了數學和數學教育工作者最為關注的問題之一. 實際上,在很長一段時間內,許多數學和數學教育工作者已經在思考和研究這個問題, 在即將推行的「高中數學課程標准」中,明確的要求把「數學文化」貫穿高中課程的始終. 對於涉及「數學文化」的一系列理論問題,應該承認還沒有討論得很清楚, 還有很多的爭論,例如,很多學者對「數學文化」這個說法也有疑義,我們認為這是很正常的. 對這些問題的研究,我們建議從兩個方面同時進行, 一方面進行理論上的研究;另一方面,積極地開發一些「數學與文化」的實例,案例,課例,探索如何將「數學文化」滲透到課堂教學中,如何讓學生從「數學文化」中提高數學素養, 在此基礎上再進行一些理論上的思考,從實踐到理論,做一些實證研究. 下面是我們提供的一個實例 ———數學與音樂,也可以看作一個素材,很希望工作在一線的教師能作進一步的開發,能使這樣的素材以不同的形式進入課堂或課外活動.我們也希望有更多的人來開發這樣的素材, 並希望這些素材能出現在教材中.
在數學課程標準的研製過程中,我們結識了一些音樂界的專家,他們給我們講述了很多音樂和數學的聯系,數學在音樂中的應用,他們特別強調,在計算機和信息技術飛速發展的今天,音樂和數學的聯系更加密切, 在音樂理論、音樂作曲、音樂合成、電子音樂製作等等方面, 都需要數學. 他們還告訴我們,在音樂界,有一些數學素養很好的音樂家為音樂的發展做出了重要的貢獻. 他們和我們都希望有志於音樂事業的同學們學好數學,因為在將來的音樂事業中,數學將起著非常重要的作用.
《梁祝》優美動聽的旋律《,十面埋伏》的錚錚琵琶聲,貝多芬令人激動的交響曲, 田野中昆蟲啁啾的鳴叫 ……當沉浸在這些美妙的音樂中時,你是否想到了它們與數學有著密切的聯系?
其實,人們對數學與音樂之間聯系的研究和認識可以說源遠流長. 這最早可以追溯到公元前六世紀,當時畢達哥拉斯學派用比率將數學與音樂聯系起來[1]. 他們不僅認識到所撥琴弦產生的聲音與琴弦的長度有著密切的關系,從而發現了和聲與整數之間的關系,而且還發現諧聲是由長度成整數比的同樣綳緊的弦發出的. 於是,畢達哥拉斯音階(thePythagorean Scale) 和調音理論誕生了 , 而且在西方音樂界占據了統治地位. 雖然托勒密(C. Ptolemy ,約100 —165 年) 對畢達哥拉斯音階的缺點進行了改造 ,得出了較為理想的純律音階(the Just Scale) 及相應的調音理論 ,但是畢達哥拉斯音階和調音理論的這種統治地位直到十二平均律音階(the temperedScale) 及相應的調音理論出現才被徹底動搖. 在我國,最早產生的完備的律學理論是三分損益律, 時間大約在春秋中期《管子.地員篇》和《呂氏春秋.音律篇》中分別有述;明代朱載 (1536 - 1610) 在其音樂著作《律學新說》對十二平均律的計算方法作了概述,在《律呂精義 ?內篇》中對十二平均律理論作了論述,並把十二平均律計算的十分精確, 與當今的十二平均律完全相同, 這在世界上屬於首次.由此可見,在古代,音樂的發展就與數學緊密地聯系在了一起. 從那時起到現在, 隨著數學和音樂的不斷發展,人們對它們之間關系的理解和認識也在不斷地加深.感覺的音樂中處處閃現著理性的數學.樂譜的書寫離不開數學.
看一下樂器之王 ———鋼琴的鍵盤吧,其上也恰好與斐波那契數列有關. 我們知道在鋼琴的鍵盤上,從一個 C 鍵到下一個 C 鍵就是音樂中的一個八度音程(如圖1) . 其中共包括13 個鍵,有8 個白鍵和5 個黑鍵 ,而 5 個黑鍵分成 2 組 ,一組有 2 個黑鍵 ,一組有 3 個黑鍵.2、3、5、8、13 恰好就是著名的斐波那契數列中的前幾個數.
如果說斐波那契數在鋼琴鍵上的出現是一種巧合, 那麼等比數列在音樂中的出現就決非偶然了: 1、2、3、4、5、6、7、i等音階就是利用等比數列規定的. 再來看圖1,顯然這個八度音程被黑鍵和白鍵分成了12個半音,並且我們知道下一個 C鍵發出樂音的振動次數(即頻率) 是第一個 C 鍵振動次數的 2倍,因為用2 來分割,所以這個劃分是按照等比數列而作出的. 我們容易求出分割比 x ,顯然 x 滿足 x12= 2 ,解這個方程可得 x 是個無理數 , 大約是 1106.於是我們說某個半音的音高是那個音的音高的1106 倍 ,而全音的音高是那個音的音高 11062 倍. 實際上,在吉它中也存在著同樣的等比數列[3].
音樂中的數學變換.
數學中存在著平移變換,音樂中是否也存在著平移變換呢 ?我們可以通過兩個音樂小節[2]來尋找答案. 顯然可以把第一個小節中的音符平移到第二個小節中去,就出現了音樂中的平移, 這實際上就是音樂中的反復. 把兩個音節移到直角坐標系中,那麼就表現為圖 3. 顯然,這正是數學中的平移. 我們知道作曲者創作音樂作品的目的在於想淋漓盡致地抒發自己內心情感,可是內心情感的抒發是通過整個樂曲來表達的,並在主題處得到升華,而音樂的主題有時正是以某種形式的反復出現的. 比如, 圖 4 就是西方樂曲 When the Saints GoMarching In 的主題[2] ,顯然 ,這首樂曲的主題就可以看作是通過平移得到的.
如果我們把五線譜中的一條適當的橫線作為時間軸(橫軸 x) ,與時間軸垂直的直線作為音高軸(縱軸y) ,那麼我們就在五線譜中建立了時間 - 音高的平面直角坐標系. 於是, 圖 4 中一系列的反復或者平移,就可以用函數近似地表示出來[2] , 如圖 5 所示,其中 x 是時間, y 是音高. 當然我們也可以在時間音高的平面直角坐標系中用函數把圖2中的兩個音節近似地表示出來.
在這里我們需要提及十九世紀的一位著名的數學家,他就是約瑟夫.傅里葉 (Joseph Fourier) ,正是他的努力使人們對樂聲性質的認識達到了頂峰. 他證明了所有的樂聲, 不管是器樂還是聲樂, 都可以用數學式來表達和描述,而且證明了這些數學式是簡單的周期正弦函數的和[1].
音樂中不僅僅只出現平移變換,可能會出現其他的變換及其組合,比如反射變換等等. 圖6 的兩個音節就是音樂中的反射變換[2]. 如果我們仍從數學的角度來考慮,把這些音符放進坐標系中, 那麼它在數學中的表現就是我們常見的反射變換,如圖 7所示. 同樣我們也可以在時間 - 音高直角坐標系中把這兩個音節用函數近似地表示出來.
通過以上分析可知,一首樂曲就有可能是對一些基本曲段進行各種數學變換的結果.
大自然音樂中的數學.
大自然中的音樂與數學的聯系更加神奇,通常不為大家所知. 例如[2] , 蟋蟀鳴叫可以說是大自然之音樂,殊不知蟋蟀鳴叫的頻率與氣溫有著很大的關系,我們可以用一個一次函數來表示:C = 4 t – 160。其中 C代表蟋蟀每分鍾叫的次數, t 代表溫度.按照這一公式,我們只要知道蟋蟀每分鍾叫的次數,不用溫度計就可以知道天氣的溫度了!
理性的數學中也存在著感性的音樂.
由一段三角函數圖像出發,我們只要對它進行適當的分段,形成適當的小節, 並在曲線上選取適當的點作為音符的位置所在,那麼就可以作出一節節的樂曲. 由此可見,我們不僅能像匈牙利作曲家貝拉 .巴托克那樣利用黃金分割來作曲,而且也可以從純粹的函數圖像出發來作曲. 這正是數學家約瑟夫.傅里葉的後繼工作,也是其工作的逆過程. 其中最典型的代表人物就是20 世紀20 年代的哥倫比亞大學的數學和音樂教授約瑟夫 .希林格(JosephSchillinger) ,他曾經把紐約時報的一條起伏不定的商務曲線描述在坐標紙上,然後把這條曲線的各個基本段按照適當的、和諧的比例和間隔轉變為樂曲,最後在樂器上進行演奏, 結果發現這竟然是一首曲調優美、與巴赫的音樂作品極為相似的樂曲[2] !這位教授甚至認為,根據一套准則,所有的音樂傑作都可以轉變為數學公式. 他的學生喬治 .格什溫(George Gershwin) 更是推陳出新, 創建了一套用數學作曲的系統, 據說著名歌劇《波吉與貝絲》(Porgy and Bess) 就是他使用這樣的一套系統創作的.
因而我們說, 音樂中出現數學、數學中存在音樂並不是一種偶然,而是數學和音樂融和貫通於一體的一種體現. 我們知道音樂通過演奏出一串串音符而把人的喜怒哀樂或對大自然、人生的態度等表現出來,即音樂抒發人們的情感, 是對人們自己內心世界的反映和對客觀世界的感觸,因而它是用來描述客觀世界的,只不過是以一種感性的或者說是更具有個人主體色彩的方式來進行. 而數學是以一種理性的、抽象的方式來描述世界,使人類對世界有一個客觀的、科學的理解和認識, 並通過一些簡潔、優美、和諧的公式來表現大自然. 因此可以說數學和音樂都是用來描述世界的,只是描述方式有所不同,但最終目的都是為人類更好地生存和發展服務,於是它們之間存在著內在的聯系應該是一件自然而然的事.
既然數學與音樂有如此美妙的聯系,為何不讓我們沉浸在《梁祝》優美動聽的旋律中或置身於昆蟲啁啾鳴叫的田野里靜下心來思考數學與音樂的內在聯系呢 ?為何不讓我們在錚錚琵琶聲中或令人激動的交響曲中充滿信心地對它們的內在聯系繼續探索呢 ?
上面,我們提供了一些數學與音樂聯系的素材,如何將這些素材「加工」成為「數學教育」的內容呢?我們提出幾個問題僅供教材編寫者和在一線工作的教師思考.
1) 如何將這樣的素材經過加工滲透到數學教學和數學教材中 ?
2) 能否把這些素材編寫成為「科普報告」, 在課外活動中,向音樂和數學愛好者報告,調查,了解,思考這樣的報告對學生的影響以及學生對這樣的報告的反映.
若干世紀以來,音樂和數學一直被聯系在一起。在中世紀時期,算術、幾何、天文和音樂都包括在教育課程之中。今天的新式計算機正在使這條紐帶綿延不斷。
樂譜的書寫是表現數學對音樂的影響的第一個顯著的領域。在樂稿上,我們看到速度、節拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。書寫樂譜時確定每小節內的某分音符數,與求公分母的過程相似——不同長度的音符必須與某一節拍所規定的小節相適應。作曲家創作的音樂是在書寫出的樂譜的嚴密結構中非常美麗而又毫不費力地融為一體的。如果將一件完成了的作品加以分析,可見每一小節都使用不同長度的音符構成規定的拍數。
除了數學與樂譜的明顯關系外,音樂還與比率、指數曲線、周期函數和計算機科學相聯系。
畢達哥拉斯學派(公元前585~前400)是最先用比率將音樂與數學聯系起來的。他們認識到撥動琴弦所產生的聲音與琴弦長度有關,從而發現了和聲與整數的關系。他們還發現諧聲是由長度成整數比的同樣綳緊的弦發出的——事實上被撥弦的每一和諧組合可表示成整數比。按整數比增加弦的長度,能產生整個音階。例如,從產生音符C的弦開始,C的16/15長度給出B,C的6/5長度給出A,C的4/3長度給出G,C的3/2長度給出F,C的8/5長度給出E,C的16/9長度給出D,C的2/1長度給出低音C。
你是否曾對大型鋼琴為何製作成那種形狀表示過疑問?實際上許多樂器的形狀和結構與各種數學概念有關。指數函數和指數曲線就是這樣的概念。指數曲線由具有y=kx形式的方程描述,式中k>0。一個例子是y=2x。它的坐標圖如下。
不管是弦樂器還是由空氣柱發聲的管樂器,它們的結構都反映出一條指數曲線的形狀。
19世紀數學家約翰·傅里葉的工作使樂聲性質的研究達到頂點。他證明所有樂聲——器樂和聲樂——都可用數學式來描述,這些數學式是簡單的周期正弦函數的和。每一個聲音有三個性質,即音高、音量和音質,將它與其他樂聲區別開來。
傅里葉的發現使聲音的這三個性質可以在圖形上清楚地表示出來。音高與曲線的頻率有關,音量和音質分別與周期函數①的振幅和形狀有關。
如果不了解音樂的數學,在計算機對於音樂創作和樂器設計的應用方面就不可能有進展。數學發現,具體地說即周期函數,在樂器的現代設計和聲控計算機的設計方面是必不可少的。許多樂器製造者把他們的產品的周期聲音曲線與這些樂器的理想曲線相比較。電子音樂復制的保真度也與周期曲線密切相關。音樂家和數學家將繼續在音樂的產生和復制方面發揮同等重要的作用。
上圖表示一根弦的分段振動和整體振動。最長的振動決定音高,較小的振動則產生泛音。
①周期函數即以等長區間重復著形狀的函數。
Ⅷ 奇妙的數學是什麼
數學是一門奇妙的學科,從最簡單的算數到極難的橢圓曲線問題,我們從中都可以看到一些彷彿和我們直觀印象不符,有些反直覺的知識,還有一些很有意思的數學趣聞,下面就舉一些簡單的例子讓大家感受數學的奇妙。
首先是最常見的一個問題:0.999.......是否等於1,其實按照現在實數定義,這兩個數是嚴格相等的,並不是0.9999...的極限等於1,嚴格的證明可以使用戴德金分割來證明,一般使用1/3之類的證明是不嚴謹的,因為無限小數嚴格來說不能做四則運算。
算術中的1+1=2並不是公理,根據皮亞諾公理它是嚴格可證的。
科赫曲線:面積有限,周長無限。
托里拆利小號:體積有限,表面積無限。
不動點定理:把一張世界地圖揉成一團,隨機地丟地上,地圖上的一個地點的垂直投影必定和現實中這個地點在空間上相重合。
e是無理數,π是無理數,那麼e+π,e-π,e*π,e/π是有理數還是無理數呢?看似如此簡單的問題,人們不知道。
不可計算數:蔡廷常數,這聽起來有點不可思議,蔡廷常數是一個確定的數字,但現已在理論上證明了,你是永遠無法求出它來的。
五次方程沒有根式解,是不是很令人沮喪與費解,但這就是事實。
上下山問題:爬同一座山,上山速度3m/s,下山速度5m/s,平均速度不是4m/s。也有點反常識,但簡單計算一下就知道了。
調和級數是發散的!
皮筋與螞蟻問題:一隻螞蟻在理性彈性繩的一端,向另一端以每秒1cm的速度爬行。彈性繩同時以每秒10cm的速度均勻地拉長,螞蟻能否爬到終點?如果以每秒100cm的速度均勻拉長呢?
擺線長度:擺線長度等於圓直徑四倍,這條與圓息息相關,怎麼看怎麼「無理」的一條線,長度不僅和π沒有關系,還是個漂亮的整數倍!太不可理解了,一個圓滾出來的線居然與π無關。
正多邊形有無窮多個,那麼正多面體呢?有點意外,只有五種,其實這個不是很難證明,用歐拉定理就可以。
最大有意義的數:葛立恆數(當然現在不是啦,但他的構造是最讓人能理解的,其它的Tree(3)之類構造就很難讓人聽懂),這個數的第一層就已經遠遠超出人類的想像,你甚至無法說出這個數的位數的位數的位數的位數(隨便你寫n多位數)。。。。。。(比如1234567890這個數的位數是10,而10的位數是2,2的位數是1)
關於維度:數學中的空間維度和物理中的維度定義是不盡相同的。數學中關於空間維度中的定義是過
Ⅸ 數學奇妙現象
數字黑洞: 黑洞原是天文學中的概念,表示這樣一種天體:它的引力場是如此之強,就連光也不能逃脫出來。數學中借用這個詞,指的是某種運算,這種運算一般限定從某些整數出發,反復迭代後結果必然落入一個點或若干點。數字黑洞運算簡單,結論明了,易於理解,故人們樂於研究。但有些證明卻不那麼容易。
例如:
123數字黑洞:
任取一個數,相繼依次寫下它所含的偶數的個數,奇數的個數與這兩個數字的和,將得到一個正整數。對這個新的數再把它的偶數個數和奇數個數與其和拼成另外一個正整數,如此進行,最後必然停留在數123。
例:所給數字 1479
第一次計算結果 448
第二次計算結果 303
第三次計算結果 123
數字黑洞495
只要你輸入一個三位數,要求個,十,百位數字不相同,如不允許輸入111,222等。那麼
你把這三個數字按大小重新排列,得出最大數和最小數。再兩者相減,得到一個新數,再重新排列,再相減,最後總會得到495這個數字,人稱:數字黑洞。
舉例:輸入352,排列得532和235,相減得297;再排列得972和279,相減得693;排列得963和369,相減得594;再排列得954和459,相減得495。
應該只是一種數字規律吧,像這樣的還有狠多,比如四位數的數字黑洞6174:
把一個四位數的四個數字由小至大排列,組成一個新數,又由大至小排列排列組成一個新數,這兩個數相減,之後重復這個步驟,只要四位數的四個數字不重復,數字最終便會變成 6174。
例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 這個數也會變成 6174,7641 - 1467 = 6174。
任取一個四位數,只要四個數字不全相同,按數字遞減順序排列,構成最大數作為被減數;按數字遞增順序排列,構成最小數作為減數,其差就會得6174;如不是6174,則按上述方法再作減法,至多不過10步就必然得到6174。
如取四位數5679,按以上方法作運算如下:
9765-5679=4086 8640-4068=4572 7542-2457=5085
8550-5058=3492 9432-2349=7083 8730-3078=5652
6552-2556=3996 9963-3699=6264 6642-2466=4176
7641-1467=6174
Ⅹ 《奇妙數學大世界A》pdf下載在線閱讀,求百度網盤雲資源
《奇妙數學大世界A》(孟繁學)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1tWlSdSpMyGPAScq2gS2c7w
書名:奇妙數學大世界A
作者:孟繁學
出版年份:1999-8
頁數:321
內容簡介:
十個阿拉伯數字,像五彩繽紛的花絮。四種運算符號+、-、×、÷,如變幻多姿的魔棒。數字與符號的組合分化,則構建一道道迷人的風景線,它牽動著多少智者的神經,激盪起幾多想像和思考。
這本書比較適合各年齡段對數學興趣濃厚的人士,對數學教師也會有很大啟示。