『壹』 光纖感測器有哪些分別用來測量什麼
光纖感測器可以分為兩大類: 一類是功能型(感測型)感測器; 另一類是非功能型(傳光型)感測器。
1.功能型感測器是利用光纖本身的特性把光纖作為敏感元件, 被測量對光纖內傳輸的光進行調制, 使傳輸的光的強度、相位、頻率或偏振態等特性發生變化, 再通過對被調制過的信號進行解調, 從而得出被測信號。
光纖在其中不僅是導光媒質,而且也是敏感元件,光在光纖內受被測量調制,多採用多模光纖。
優點:結構緊湊、靈敏度高。
缺點:須用特殊光纖,成本高,
典型例子:光纖陀螺、光纖水聽器等
2.非功能型感測器是利用其它敏感元件感受被測量的變化, 光纖僅作為信息的傳輸介質,常採用單模光纖。
光纖在其中僅起導光作用,光照在光纖型敏感元件上受被測量調制。
優點:無需特殊光纖及其他特殊技術,
比較容易實現,成本低。
缺點:靈敏度較低。
實用化的大都是非功能型的光纖感測器。
光纖感測器是最近幾年出現的新技術,可以用來測量多種物理量,比如聲場、電場、壓力、溫度、角速度、加速度等,還可以完成現有測量技術難以完成的測量任務。在狹小的空間里,在強電磁干擾和高電壓的環境里,光纖感測器都顯示出了獨特的能力。目前光纖感測器已經有70多種,大致上分成光纖自身感測器和利用光纖的感測器。
所謂光纖自身的感測器,就是光纖自身直接接收外界的被測量。外接的被測量物理量能夠引起測量臂的長度、折射率、直徑的變化,從而使得光纖內傳輸的光在振幅、相位、頻率、偏振等方面發生變化。測量臂傳輸的光與參考臂的參考光互相干涉(比較),使輸出的光的相位(或振幅)發生變化,根據這個變化就可檢測出被測量的變化。光纖中傳輸的相位受外界影響的靈敏度很高,利用干涉技術能夠檢測出10的負4次方弧度的微小相位變化所對應的物理量。利用光纖的繞性和低損耗,能夠將很長的光纖盤成直徑很小的光纖圈,以增加利用長度,獲得更高的靈敏度。
光纖聲感測器就是一種利用光纖自身的感測器。當光纖受到一點很微小的外力作用時,就會產生微彎曲,而其傳光能力發生很大的變化。聲音是一種機械波,它對光纖的作用就是使光纖受力並產生彎曲,通過彎曲就能夠得到聲音的強弱。光纖陀螺也是光纖自身感測器的一種,與激光陀螺相比,光纖陀螺靈敏度高,體積小,成本低,可以用於飛機、艦船、導彈等的高性能慣性導航系統。如圖就是光纖感測器渦輪流量計的原理。
光纖感測器流量計原理
另外一個大類的光纖感測器是利用光纖的感測器。其結構大致如下:感測器位於光纖端部,光纖只是光的傳輸線,將被測量的物理量變換成為光的振幅,相位或者振幅的變化。在這種感測器系統中,傳統的感測器和光纖相結合。光纖的導入使得實現探針化的遙測提供了可能性。這種光纖傳輸的感測器適用范圍廣,使用簡便,但是精度比第一類感測器稍低。
光纖在感測器家族中是後起之秀,它憑借著光纖的優異性能而得到廣泛的應用,是在生產實踐中值得注意的一種感測器。
近年來,感測器在朝著靈敏、精確、適應性強、小巧和智能化的方向發展。在這一過程中,光纖感測器這個感測器家族的新成員倍受青睞。光纖具有很多優異的性能,例如:抗電磁干擾和原子輻射的性能,徑細、質軟、重量輕的機械性能;絕緣、無感應的電氣性能;耐水、耐高溫、耐腐蝕的化學性能等,它能夠在人達不到的地方(如高溫區),或者對人有害的地區(如核輻射區),起到人的耳目的作用,而且還能超越人的生理界限,接收人的感官所感受不到的外界信息。
光纖感測器的基本工作原理是將來自光源的光經過光纖送入調制器,使待測參數與進入調制區的光相互作用後,導致光的光學性質(如光的強度、波長、頻率、相位、偏正態等)發生變化,稱為被調制的信號光,在經過光纖送入光探測器,經解調後,獲得被測參數。
光纖感測器優點:
靈敏度較高;幾何形狀具有多方面的適應性,可以製成任意形狀的光纖感測器;可以製造感測各種不同物理信息(聲、磁、溫度、旋轉等)的器件;可以用於高壓、電氣雜訊、高溫、腐蝕、或其它的惡劣環境;而且具有與光纖遙測技術的內在相容性。
光纖感測器應用:磁、聲、壓力、溫度、加速度、陀螺、位移、液面、轉矩、光聲、電流和應變等物理量的測量。
光纖感測器憑借著其大量的優點已經成為感測器家族的後起之秀,並且在各種不同的測量中發揮著自己獨到的作用,成為感測器家族中不可缺少的一員。 以上供參考!希望對你有所幫助!
『貳』 光纖感測器有什麼優點
光纖感測器優點:
一、靈敏度較高;
二、幾何形狀具有多方面的適應性,可以製成任意形狀的光纖感測器;
三、可以製造感測各種不同物理信息(聲、磁、溫度、旋轉等)的器件;
四、可以用於高壓、電氣雜訊、高溫、腐蝕、或其它的惡劣環境;
五、而且具有與光纖遙測技術的內在相容性。
光纖感測器是一種將被測對象的狀態轉變為可測的光信號的感測器。光纖感測器的工作原理是將光源入射的光束經由光纖送入調制器,在調制器內與外界被測參數的相互作用, 使光的光學性質如光的強度、波長、頻率、相位、偏振態等發生變化,成為被調制的光信號,再經過光纖送入光電器件、經解調器後獲得被測參數。整個過程中,光束經由光纖導入,通過調制器後再射出,其中光纖的作用首先是傳輸光束,其次是起到光調制器的作用。
(2)光纖探測精度數據加密擴展閱讀:
光纖感測器分類
1、根據光受被測對象的調制形式可以分為:強度調制型、偏振態制型、相位制型、頻率制型;
2、根據光是否發生干涉可分為:干涉型和非干涉型;
3、根據是否能夠隨距離的增加連續地監測被測量可分為:分布式和點分式;
4、根據光纖在感測器中的作用可以分為:一類是功能型(Functional Fiber,縮寫為FF)感測器,又稱為感測型感測器; 另一類是非功能型(Non Functional Fiber縮寫為NFF),又稱為傳光型感測器。
『叄』 光纖感測器的特點是什麼
特點如下:
一。靈敏度較高;
二。幾何形狀具有多方面的適應性,可以製成任意形狀的光纖感測器;
三。可以製造感測各種不同物理信息(聲、磁、溫度、旋轉等)的器件;
四。可以用於高壓、電氣雜訊、高溫、腐蝕、或其它的惡劣環境;
五。而且具有與光纖遙測技術的內在相容性。
光纖感測器的優點是與傳統的各類感測器相比,光纖感測器用光作為敏感信息的載體,用光纖作為傳遞敏感信息的媒質,具有光纖及光學測量的特點,有一系列獨特的優點。電絕緣性能好,抗電磁干擾能力強,非侵入性,高靈敏度,容易實現對被測信號的遠距離監控,耐腐蝕,防爆,光路有可撓曲性,便於與計算機聯接。
感測器朝著靈敏、精確、適應性強、小巧和智能化的方向發展,它能夠在人達不到的地方(如高溫區或者對人有害的地區,如核輻射區),起到人的耳目作用,而且還能超越人的生理界限,接收人的感官所感受不到的外界信息。
用途
1用於電話、網路寬頻等數字型號傳輸。
2用於自動售貨機、金融終端有關的設備、點鈔機的紙幣、卡、硬幣、存摺等的通過情況
3用於自動化設備上產品定位、計數、識別。
『肆』 光纖測試的步驟是什麼
對光纖參數的測試方法參照國標中相關的試驗方法進行,下面列舉出一些光纖基本參數的測試方法。光纖的特性參數中,幾何特性參數對光纖的包層直徑、包層不圓度、芯/包層同心度誤差的測試方法做出相關說明;光學特性參數對模場直徑、單模光纖的截止波長、成纜單模光纖的截止波長的測試方法做出相關說明;傳輸特性參數對光纖的衰減、波長色散的測試方法做出相關說明。2.1、光纖幾何特性參數測試光纖的折射率分布、包層直徑、包層不圓度、芯/包層同心度誤差的測試方法。測量包層直徑、包層不圓度、芯/包層同心度誤差的測試方法是折射近場法、橫向干涉法和近場光分布法(橫截面幾何尺寸測定)。光纖的折射率分布、包層直徑、包層不圓度、芯/包層同心度誤差的測試方法有三種。●折射近場法折射近場法是多模光纖和單模光纖折射率分布測定的基準試驗方法(RTM),也是多模光纖尺寸參數測定的基準試驗方法和單模光纖尺寸參數測定的替代試驗方法(ATM)。折射近場測量是一種直接和精確的測量。它能直接測量光纖(纖芯和包層)橫截面折射率變化,具有高解析度,經定標可給出折射率絕對值。由折射率剖面圖可確定多模光纖和單模光纖的幾何參數及多模光纖的最大理論數值孔徑。●橫向干涉法橫向干涉法是折射率剖面和尺寸參數測定的替代試驗方法(ATM)。橫向干涉法採用干涉顯微鏡,在垂直於光纖試樣軸線方向上照明試樣,產生干涉條紋,通過視頻檢測和計算機處理獲取折射率剖面。●近場光分布法這種方法是多模光纖幾何尺寸測定的替代試驗方法(ATM)和單模光纖幾何尺寸(除模場直徑)測定的基準試驗方法(RTM)。通過對被測光纖輸出端面上近場光分布進行分析,確定光纖橫截面幾何尺寸參數。可以採用灰度法和近場掃描法。灰度法用視頻系統實現兩維(x-y)近場掃描,近場掃描法只進行一維近場掃描。由於纖芯不圓度的影響,近場掃描法與灰度法得出的纖芯直徑可能有差別。纖芯不圓度可以通過多軸掃描來確定。一般商用儀表折射率分布的測試方法是折射近場法。測試中使用的儀表是光纖幾何參數和折射率分布測量儀。測試步驟如下:①試樣制備時應注意試樣端面清潔、光滑並垂直於光纖軸。②測量包層時,端面傾斜角應小於1°。控制端面損傷,使其對測量精度的影響最小。③注意避免光纖的小彎曲。④將被測光纖剝除被覆層,用專用光纖切割刀切割出平整的端面, 放入光纖樣品盒中,樣品盒中注入折射率稍高於光纖包層折射率的折射率匹配液。⑤將光纖樣品盒垂直放在光纖折射率分布測量儀的光源和光探測器之間,進行x-y方向的掃描測試。⑥通過分析得到光纖折射率分布、包層直徑、包層不圓度、芯/包層同心度誤差的測試數據。2.2、光纖光學特性參數測試(1)單模光纖模場直徑的測試方法模場直徑是單模光纖基模(LP01)模場強度空間分布的一種度量,它取決於該光纖的特性。模場直徑(MFD)可在遠場用遠場光強分布Pm(θ)、互補孔徑功率傳輸函數α(θ)和在近場用近場光強分布f2(r)來測定。模場直徑定義與測量方法嚴格相關。單模光纖模場直徑的測試方法有三種。●直接遠場掃描法直接遠場掃描法是測量單模光纖模場直徑的基準試驗方法(RTM)。它直接按照柏特曼(Petermann)遠場定義,通過測量光纖遠場輻射圖計算出單模光纖的模場直徑。●遠場可變孔徑法遠場可變孔徑法是測量單模光纖模場直徑的替代試驗方法(ATM)。它通過測量光功率穿過不同尺寸孔徑的兩維遠場圖計算出單模光纖的模場直徑,計算模場直徑的數學基礎是柏特曼遠場定義。●近場掃描法近場掃描法是測量單模光纖模場直徑的替代試驗方法(ATM)。它通過測量光纖徑向近場圖計算出單模光纖的模場直徑,計算模場直徑的數學基礎是柏特曼遠場定義。一般商用儀表模場直徑測試方法是遠場變孔徑法(VAFF)。測試中使用的儀表是光纖模場直徑和衰減譜測量儀。測試步驟如下:●准備2m(±0.2m)的光纖樣品,兩端剝除被覆層,放在光纖夾具中,用專用光纖切割刀切割出平整的端面。●將被測光纖連接入測量儀的輸入和輸出端,檢查光接收端的聚焦狀態,如果曲線不在屏幕的正中央或光纖端面不夠清晰,則需要進行位置和焦距的調整。●在光源的輸出端保持測試光纖的注入條件不變,打一個半徑30mm的小環,濾除LP11模的影響,進行模場直徑的測試。通過分析得到光纖模場直徑的測試數據。(2)單模光纖截止波長和成纜單模光纖截止波長的測試方法測量單模光纖的截止波長和成纜單模光纖的截止波長的測試方法是傳輸功率法。當光纖中的模大體上被均勻激勵情況下,包括注入較高次模在內的總光功率與基模光功率之比隨波長減小到規定值(0.1dB)時所對應的較大波長就是截止波長。傳輸功率法根據截止波長的定義,在一定條件下,把通過被測光纖(或光纜)的傳輸功率與參考傳輸功率隨波長的變化相比較,得出光纖(或光纜)的截止波長值。一般商用儀表模場直徑測試方法是傳輸功率法。測試中使用的儀表是光纖模場直徑和衰減譜測量儀。測試步驟如下:①在樣品制備時,單模光纖的截止波長的測試使用2m(±0.2m)的光纖樣品,成纜單模光纖的截止波長的測試使用22m的已成纜單模光纖。②將測試光纖的兩端剝除被覆層, 放在光纖夾具中,用專用光纖切割刀切割出平整的端面。③將被測光纖連接入測量儀的輸入和輸出端, 檢查光接收端的聚焦狀態, 如果曲線不在其屏幕的正中央或光纖端面不夠清晰, 則需要進行位置和焦距的調整。④先在測試光纖不打小環的情況下,測試參考傳輸功率。⑤再將測試光纖在注入端打一個半徑30mm的小環,濾除LP11模的影響,測試此時的傳輸功率。⑥將兩條傳輸功率測試曲線相比較,通過數據分析處理,得到光纖(或光纜)的截止波長值。2.3、光纖傳輸特性參數測試(1)衰減的測試方法衰減是光纖中光功率減少量的一種度量,它取決於光纖的性質和長度,並受測量條件的影響。衰減的主要測試方法如下:●截斷法截斷法是測量光纖衰減特性的基準試驗方法(RTM),在不改變注入條件時測出通過光纖兩橫截面的光功率,從而直接得到光纖衰減。●插入損耗法插入損耗法是測量光纖衰減特性的替代試驗方法(ATM),原理上類似於截斷法,但光纖注入端的光功率是注入系統輸出端的出射光功率。測得的光纖衰減中包含了試驗裝置的衰減,必須分別用附加連接器損耗和參考光纖段損耗對測量結果加以修正。●後向散射法後向散射法是測量光纖衰減特性的替代試驗方法(ATM),它測量從光纖中不同點後向散射至該光纖始端的後向散射光功率。這是一種單端測量方法。一般商用儀表衰減的測試方法是截斷法和後向散射法。截斷法測試中使用的儀表是光纖模場直徑和衰減譜測量儀。測試步驟如下:①准備不短於1km或更長一些(一般一個光纖盤長:25km)的光纖樣品,兩端剝除被覆層, 放在光纖夾具中,用專用光纖切割刀切割出平整的端面。②將測試光纖盤的外端光纖通過專用夾具連接儀表的發射端,將測試光纖盤的內端光纖通過專用夾具連接儀表的接收端,檢查光接收端的聚焦狀態, 如果曲線不在屏幕的正中央或光纖端面不夠清晰, 則需要進行位置和焦距的調整。③在光纖注入端打一個半徑30mm的小環,濾除LP11模的影響,測試此時的傳輸功率。④保持光源的注入狀態不變(在光纖注入端打一個半徑30mm的小環),將測試光纖樣品截斷為2m的試樣,光纖通過專用夾具連接儀表的接收端,檢查光接收端的聚焦狀態, 如果曲線不在屏幕的正中央或光纖端面不夠清晰,則需要進行位置和焦距的調整。測試此時的傳輸功率。將兩條傳輸功率測試曲線相比較,通過數據分析處理,得到光纖在1310nm和1550nm波段的衰減譜特性。後向散射法測試中使用的儀表是光時域反射計。測試步驟如下:①將測試光纖盤的外端通過熔接光纖連接器或裸纖適配器,接入光時域反射計進行測試。②測試中光時域反射計使用最小二乘法(LSA)計算光纖的衰減,此方法可忽略光纖中可能的熔接或接頭損耗對光纖鏈路測試造成的影響。③如需分段測試光纖鏈路的衰減可使用兩點法進行測試。④光纖衰減測試中,應選擇光纖測試曲線中的線性區域,避開測試曲線近端的飽和區域和末端的反射區域,測試兩點間的光纖衰減(dB/km)。⑤更改光時域反射計的測試波長,分別對1310nm和1550nm波長處的光纖衰減特性進行測試分析。實際測試中,可以通過截斷法和後向散射法兩種測試方法驗證光纖衰減的測試數據。對於帶有光纖連接器的測試光纖樣品,為了不破壞已安裝的光纖連接器,則只能使用後向散射法進行單端非破壞性測試。(2)波長色散的測試方法波長色散是由組成光源譜的不同波長的光波以不同群速度傳輸引起的光纖中每單位光源譜寬的光脈沖展寬,用ps/nm表示。它取決於該光纖的特性和長度。波長色散的主要測試方法如下:●相移法相移法是測量光纖波長色散的基準試驗方法(RTM)。它在頻域中通過檢測、記錄和處理不同波長正弦調制信號的相移來測量不同波長信號的群時延,從而推導出光纖波長色散。●脈沖時延法脈沖時延法是測量光纖波長色散的替代試驗方法(ATM)。它在時域中通過直接檢測、記錄和處理不同波長脈沖信號的群時延,從而推導出光纖波長色散。●微分相移法微分相移法是測量光纖波長色散的替代試驗方法(ATM)。它在1000nm~1700nm波長范圍內由兩個相近波長間的微分群時延來測量特定波長上的波長色散系數。一般商用儀表波長色散的測試方法是相移法。測試中使用的設備是色散測量儀。測試步驟如下:①測試光纖樣品應不短於1km。光纖兩端做好光纖連接器。②在色散測試時應先用兩根標准光纖跳線分別連接色散測量儀的輸入端和輸出端,通過法蘭盤連接兩根光纖跳線的另一端,將色散測量儀自環,測試此時的參考值。③再將測試光纖通過法蘭盤接入光纖環路。④根據測試光纖樣品,設定光纖類型;數據擬合方式;光纖測試中的群折射率;測試光纖長度;;測試波長范圍;波長間隔等。⑤測試光纖的零色散波長、零色散斜率和色散系數等。通過對測試數據的分析處理得到光纖的色散特性。光纖參數測試中的不確定度評定方法:光纖參數測試中的不確定度評定一般參考下面提到的方法進行。主要考慮測量儀器引入的不確定度和測量重復性兩方面因素。3、光纖參數測試中普遍存在的問題以單模光纖B1.1類(即非色散位移單模光纖)、B1.3類(即波長段擴展的非色散位移單模光纖)和B4類(即非零色散位移單模光纖)為例說明光纖參數測試中普遍存在的問題。光纖參數測試中普遍存在的問題是單模光纖的截止波長指標超標的問題。
根據國內光纖光纜標准,截止波長可分為光纜截止波長λCC、光纖截止波長λC和跳線光纜截止波長λCj,光纖光纜的截止波長指標應符合表二中的相應規定。光纜使用長度不小於22m時應符合表二中λCC規定,使用長度小於22m但不小於2m時應符合表二中λCj規定,使用長度小於2m時應符合表二中 λC規定,以防止傳輸時可能產生的模式雜訊。
『伍』 感溫光纖如何檢測
感溫光纖探測器設置:
1、平均次數:OTDR測試曲線是將每次輸出脈沖後的反射信號采樣,並把多次采樣做平均處理以消除一些隨機事件,平均化時間越長,雜訊電平越接近最小值,動態范圍就越大。平均化時間越長,測試精度越高,但達到一定程度時精度不再提高。為了提高測試速度,在一些不需要精確數據的定性測量中,可以適當減少平均次數,縮短整體測試時間。量程和解析度:量程值決定被測光纖的距離范圍,量程設置應至少是被測光纖的兩倍,以為分析軟體提供一個曲線端點之後足夠清潔的雜訊區。為精確分析,可將光纖的長度加倍,在選擇下一個可用的距離范圍。解析度值指定數據樣本點的距離,解析度越高,取樣點的距離越近,對光纖的細節反映越清晰,但過高的解析度將使單位時間內的平均次數降低,為達到理想的信噪比就需增加測量時間,降低測量速度。
2、脈沖寬度:用於指定被輸入被測光纖的光脈沖的寬度。在相同的脈沖幅度下,脈沖寬度越大,脈沖的能量也越大,從而可以對較大的光纖量程進行測量,較大的脈沖寬度將加大測量的盲區。
3、折射率:該數值被用於計算距離測量,折射率值影響所有距離測量,不同廠家、不同類型的光纖其光纖折射率是不同的,測量前要正確感溫光纖探測器設置。
『陸』 光纖在測溫和通信中的原理和性能
光纖溫度感測器工作原理為: 在低溫區(400℃以下), 輻射信號較弱, 系統開啟發光二極體(LED)使熒光測溫系統工作。 發光二極體發射調制的激勵光, 經聚光鏡耦合到Y型光纖的分支端, 由Y型光纖並通過光纖耦合器耦合到光纖溫度感測頭。 光纖感測頭端部受激勵光激發而發射熒光, 熒光信號由光纖導出, 並通過光纖耦合器從Y型光纖的另一分支端射出, 由光電探測器接收。 光電探測器輸出的光信號經放大後由熒光信號處理系統處理, 計算熒光壽命並由此得到所測溫度值。 而在高溫區(400℃以上), 輻射信號足夠強, 輻射測溫系統工作, 發光二極體關閉。 輻射信號通過藍寶石光纖並通過Y型光纖輸出, 由探測器轉換成電信號, 系統通過檢測輻射信號強度計算得到所測溫度。
光纖感測頭端部由Cr3+離子摻雜, 實現光激勵時的熒光發射。 摻雜部分光纖長度為8~10 mm。 端部光纖的外表面同時鍍覆黑體腔, 用於輻射測溫。 (這時,光纖黑體腔長度與直徑之比大於10,可以滿足黑體腔表觀輻射率恆定的要求)。 值得注意的是, 避免或減少熒光發射部分與熱輻射部分的相互干擾, 對保證整個系統的性能十分重要。
經過分析, 可以發現這種干擾主要表現為:
1) 熒光信號中輻射背景信號對熒光壽命檢測精度的影響,
2) 光纖表面鍍覆對熒光強度的影響,
3) 光纖內Cr3+離子摻雜對黑體腔熱輻射信號的影響。
『柒』 幾種光纖感測器的介紹及特點
目前國內市場上,應用最為廣泛的光纖感測技術當屬布拉格光纖光柵和基於光時域反射的分布式感測器,這種技術基本上可以滿足中低端市場的需求。而現在光譜線寬窄至2kHz的單頻光纖激光器及其引申出來的最新一代光感測技術,這與傳統的光纖感測有很大的區別,它可以進行超遠距離的傳輸,精度和敏感度能達到更高的要求,這在高端市場上需求很大,目前該項技術在國內尚處於立項和預研階段。國內市場上光纖感測器應用主要在以下四種:光纖陀螺、光纖光柵感測器、光纖電流感測器和光纖水聽器。下面對這四種產品分別介紹一下。 一、光纖光柵感測器。 目前國內外感測器領域的研究熱點之一光纖布拉格光柵感測器。傳統光纖感測器基本上可分為兩種類型:光強型和干涉型。光強型感測器的缺點在於光源不穩定,而且光纖損耗和探測器容易老化;干涉型感測器由於要求兩路干涉光的光強同等,所以 需要固定參考點而導致應用不方便。目前開發的以光纖布拉格光柵為主的光纖光柵感測器可以避免出現上面兩種情況,其感測信號為波長調制、復用能力強。在建築健康檢測、沖擊檢測、形狀控制和振動阻尼檢測等應用中,光纖光柵感測器是最理想的靈敏元件。光纖光柵感測器在地球動力學、航天器、電力工業和化學感測中有廣泛的應用。 二、光纖陀螺。 光纖陀螺按原理可分為干涉型、諧振型和布里淵型,這是三代光纖陀螺的代表。第一代干涉型光纖陀螺,目前該項技術已經成熟,適合進行批量生產和商品化;第二代諧振型光纖陀螺,暫時還處於實驗室研究向實用化推進的發展階段;第三代布里淵型,它還處於理論研究階段。光纖陀螺結構根據所採用的光學元件有三種實現方法:小型分立元件系統、全光纖系統和集成光學元件系統。目前分立光學元件技術已經基本退出,全光纖系統用在開環低精度、低成本的光纖陀螺中,集成光學器件陀螺由於其工藝簡單、總體重復性好、成本低,所以在高精度光纖陀螺很受歡迎,是其主要實現方法。 三、光纖水聽器。 光纖水聽器主要用來測量水下聲信號,它通過高靈敏度的光纖相干檢測,將水聲信號轉換為光信號,並通過光纖傳至信號處理系統進行識別。與傳統水聽器相比,光纖水聽器具有靈敏度高、響應帶寬寬、不受電磁干擾等特點,廣泛用於軍事和石油勘探、環境檢測等領域,具有很大的發展潛力。光纖水聽器按原理可分為干涉型、強度型、光柵型等。干涉型光纖水聽器關鍵技術已經逐步發展成熟,在部分領域形成產品;光纖光柵水聽器則是當前研究的熱點,研究的關鍵技術涉及光源、光纖器件、探頭技術、抗偏振衰落技術、抗相位衰落技術、信號處理技術、多路復用技術以及工程技術等。 四、光纖電流感測器。電力工業的迅猛發展帶動電力傳輸系統容量不斷增加,運行電壓等級也越來越高,電流也越來越大,這樣測量起來就非常困難,這就顯現出光纖電流感測器的優點了。在電力系統中,傳統的用來測量電流的感測器是以電磁感應為基礎,這就存在以下缺點:它容易爆炸以至引起災難性事故;大故障電流會造成鐵芯磁飽和;鐵芯發生共振效應;頻率響應慢;測量精度低;信號易受干擾;體積重量大、價格昂貴等等,已經很難滿足新一代數字電力網的發展需要。這個時候光纖電流感測器應運而生。 光纖感測器技術是建立在光纖、光通信和光電子技術的基礎上發展起來的,電磁干擾和腐蝕作用對它的影響很小,還能適應各種惡劣的氣象環境,不要額外的電源進行供電,就可以長距離的進行傳輸,已成為感測器行業的研究熱點。
『捌』 基恩士的光纖感測器怎麼調節精度
基恩士激光感測器 IL-100的解析度是 2 μm。
感測器不講精度,只講解析度(最小顯示單位)。
精度是和量程相關的指標。例如,測量范圍1mm 解析度是 2 μm 精度為0.2%;測量 2mm 精度就成了0.1%。所以感測器不講精度指標。(il-100的測量范圍 ±99.999 mm)
設定值:設定的反光量的門檻值。
顯示值:在實際檢測中,實際的反光量。
顯示值在超過門檻值和低於門檻值時,光纖放大器的輸出信號,會不同。
光纖頭都是由兩根光纖組成,一個發出光,另一個接受反射回來的光線
精度比較高的就是德國米銥和基恩士了。相比而言,米銥更注重數據穩定性和精度,基恩士會更注重數據後期處理,但有時會導致測量結果失真。以米銥2300系列舉例,2mm量程,絕對誤差可以達到0.6微米,重復性和解析度會更小。
激光位移感測器專為全反射面和光澤表面測量設計。該款激光位移感測器可以用於測量玻璃厚度,鋼化玻璃位移或微小零部件組裝精度。測量頻率高達49 kHz, 使這款激光位移感測器特別適合高動態測量和監控。
採用創新的高級實時表面補光技術 (A-RTSC), 使該款感測器可以在被測表面變化時,自動實時精準補償。數據輸出採用Ethernet 或RS422, EtherCAT 版本的輸出也即將推出。如果該款位移感測器與德國米銥提供的C-Box / 2A 模塊連接,也可以輸出模擬量信號。
『玖』 光纖感測器的分類
根據光受被測對象的調制形式可以分為:強度調制型、偏振態制型、相位制型、頻率制型;
根據光是否發生干涉可分為:干涉型和非干涉型;
根據是否能夠隨距離的增加連續地監測被測量可分為:分布式和點分式;
根據光纖在感測器中的作用可以分為:一類是功能型(Functional Fiber,縮寫為FF)感測器,又稱為感測型感測器; 另一類是非功能型(Non Functional Fiber縮寫為NFF),又稱為傳光型感測器。
功能型感測器
功能型感測器是利用光纖本身的特性把光纖作為敏感元件, 被測量對光纖內傳輸的光進行調制, 使傳輸的光的強度、相位、頻率或偏振態等特性發生變化, 再通過對被調制過的信號進行解調, 從而得出被測信號。
光纖在其中不僅是導光媒質,而且也是敏感元件,光在光纖內受被測量調制,多採用多模光纖。
優點:結構緊湊、靈敏度高。
缺點:須用特殊光纖,成本高,
典型例子:光纖陀螺、光纖水聽器等
非功能型光纖感測器
非功能型光纖感測器是利用其它敏感元件感受被測量的變化, 光纖僅作為信息的傳輸介質,常採用單模光纖。
光纖在其中僅起導光作用,光照在光纖型敏感元件上受被測量調制。
優點:光纖即可用於電氣隔離,有用於數據傳輸,且光纖傳輸的信號不受電磁干擾的影響。
實用化的大都是非功能型的光纖感測器。AnyWay的變頻電壓感測器、變頻電流感測器、變頻功率感測器(一種電壓、電流組合式感測器)就屬於非功能型的光纖感測器,在復雜電磁環境下的電量測量中,有其獨到的優勢。
光纖感測器是最近幾年出現的新技術,可以用來測量多種物理量,比如聲場、電場、壓力、溫度、角速度、加速度等,還可以完成現有測量技術難以完成的測量任務。在狹小的空間里,在強電磁干擾和高電壓的環境里,光纖感測器都顯示出了獨特的能力。光纖感測器有70多種,大致上分成光纖自身感測器和利用光纖的感測器。
所謂光纖自身的感測器,就是光纖自身直接接收外界的被測量。外接的被測量物理量能夠引起測量臂的長度、折射率、直徑的變化,從而使得光纖內傳輸的光在振幅、相位、頻率、偏振等方面發生變化。測量臂傳輸的光與參考臂的參考光互相干涉(比較),使輸出的光的相位(或振幅)發生變化,根據這個變化就可檢測出被測量的變化。光纖中傳輸的相位受外界影響的靈敏度很高,利用干涉技術能夠檢測出10的負4次方弧度的微小相位變化所對應的物理量。利用光纖的繞性和低損耗,能夠將很長的光纖盤成直徑很小的光纖圈,以增加利用長度,獲得更高的靈敏度。
光纖聲感測器就是一種利用光纖自身的感測器。當光纖受到一點很微小的外力作用時,就會產生微彎曲,而其傳光能力發生很大的變化。聲音是一種機械波,它對光纖的作用就是使光纖受力並產生彎曲,通過彎曲就能夠得到聲音的強弱。光纖陀螺也是光纖自身感測器的一種,與激光陀螺相比,光纖陀螺靈敏度高,體積小,成本低,可以用於飛機、艦船、導彈等的高性能慣性導航系統。如圖就是光纖感測器渦輪流量計的原理。
光纖布拉格光柵感測器
光纖布拉格光柵感測器(FBS)是一種使用頻率最高,范圍最廣的光纖感測器,這種感測器能根據環境溫度以及/或者應變的變化來改變其反射的光波的波長。光纖布拉格光柵是通過全息干涉法或者相位掩膜法來將一小段光敏感的光纖暴露在一個光強周期分布的光波下面。這樣光纖的光折射率就會根據其被照射的光波強度而永久改變。這種方法造成的光折射率的周期性變化就叫做光纖布拉格光柵。
當一束廣譜的光束被傳播到光纖布拉格光柵的時候,光折射率被改變以後的每一小段光纖就只會反射一種特定波長的光波,這個波長稱為布拉格波長,這種特性就使光纖布拉格光柵只反射一種特定波長的光波,而其它波長的光波都會被傳播。
按光纖在光纖感測器中的作用可分為感測型和傳光型兩種類型。
感測型光纖感測器的光纖不僅起傳遞光作用,同時又是光電敏感元件。由於外界環境對光纖自身的影響,待測量的物理量通過光纖作用於感測器上,使光波導的屬性(光強、相位、偏振態、波長等)被調制。感測器型光纖感測器又分為光強調制型、相位調制型、振態調制型和波長調制型等。
傳光型光纖感測器
傳光型光纖感測器是將經過被測對象所調制的光信號輸入光纖後,通過在輸出端進行光信號處理而進行測量的,這類感測器帶有另外的感光元件對待測物理量敏感,光纖僅作為傳光元件,必須附加能夠對光纖所傳遞的光進行調制的敏感元件才能組成感測元件。光纖感測器根據其測量范圍還可分為點式光纖感測器、積分式光纖感測器、分布式光纖感測器三種。其中,分布式光纖感測器被用來檢測大型結構的應變分布,可以快速無損測量結構的位移、內部或表面應力等重要參數。用於土木工程中的光纖感測器類型主要有Math-Zender干涉型光纖感測器,Fabry-pero腔式光纖感測器,光纖布喇格光柵感測器等。
光纖感測器的輕巧性、耐用性和長期穩定性,使其能夠方便的應用於建築鋼結構和混凝土等各種建築材料的內部應力、應變檢測。實現的建築結構的健康檢測。
光纖感測器的另外一個大類是利用光纖的感測器。其結構大致如下:感測器位於光纖端部,光纖只是光的傳輸線,將被測量的物理量變換成為光的振幅,相位或者振幅的變化。在這種感測器系統中,傳統的感測器和光纖相結合。光纖的導入使得實現探針化的遙測提供了可能性。這種光纖傳輸的感測器適用范圍廣,使用簡便,但是精度比第一類感測器稍低。
光纖在感測器家族中是後起之秀,它憑借著光纖的優異性能而得到廣泛的應用,是在生產實踐中值得注意的一種感測器。
光纖感測器憑借著其大量的優點已經成為感測器家族的後起之秀,並且在各種不同的測量中發揮著自己獨到的作用,成為感測器家族中不可缺少的一員。
『拾』 光纖傳輸需不需要對數據進行加密
不需要,因為它是物理層的,光纖傳的是光,你的明白???光纖到端後,通過光纖收發器,把網轉為以太,然後直接到三層交換機或路由器上去,出來 的乙太網的數據包,保密上比電纜要大,這是肯定的,光纖比電纜好的幾個特點之一就是這個,保密好,搞干擾,電纜抗干擾不行,光可以呀,因為傳輸介質是不一樣的,