導航:首頁 > 文檔加密 > java加密演算法哪個好

java加密演算法哪個好

發布時間:2022-05-13 02:43:28

java最常用的幾種加密演算法

簡單的Java加密演算法有:
第一種. BASE
Base是網路上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規范。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字元串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。
第二種. MD
MD即Message-Digest Algorithm (信息-摘要演算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD的前身有MD、MD和MD。
MD演算法具有以下特點:
壓縮性:任意長度的數據,算出的MD值長度都是固定的。
容易計算:從原數據計算出MD值很容易。
抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。
弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。
強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。
MD的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。
第三種.SHA
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該演算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該演算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。
SHA-與MD的比較
因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。
對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-的運行速度比MD慢。
第四種.HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。

⑵ 分享Java常用幾種加密演算法

簡單的Java加密演算法有:
第一種. BASE
Base是網路上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規范。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字元串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。
第二種. MD
MD即Message-Digest Algorithm (信息-摘要演算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD的前身有MD、MD和MD。廣泛用於加密和解密技術,常用於文件校驗。校驗?不管文件多大,經過MD後都能生成唯一的MD值。好比現在的ISO校驗,都是MD校驗。怎麼用?當然是把ISO經過MD後產生MD的值。一般下載linux-ISO的朋友都見過下載鏈接旁邊放著MD的串。就是用來驗證文件是否一致的。
MD演算法具有以下特點:
壓縮性:任意長度的數據,算出的MD值長度都是固定的。
容易計算:從原數據計算出MD值很容易。
抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。
弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。
強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。
MD的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。
第三種.SHA
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該演算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該演算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。
SHA-與MD的比較
因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。
對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-的運行速度比MD慢。
第四種.HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。

⑶ java 加密 演算法 哪種好 知乎

sha1,主要適用於數字簽名標准 (Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)

⑷ java web開發用戶注冊時密碼加密一般用什麼技術

MD5加密,這是一種不可逆的加密演算法,即一旦進行MD5加密演算法,不能再得到原始的密碼

開發者可以將用戶輸入的密碼進行MD5加密後,再與資料庫中存儲的加密後的密碼比較,即可知道密碼的准確性。

若想找回密碼,一種即可以重置密碼,即有一個默認的密碼。重置後,可以自己再修改密碼;另一種即可以通過其他方面的驗證後,來錄入一個新密碼。現在很多都是使用郵箱驗證或是手機隨機驗證,驗證成功後,可以設置新密碼

⑸ java加密的幾種方式

朋友你好,很高興為你作答。

首先,Java加密能夠應對的風險包括以下幾個:

1、核心技術竊取

2、核心業務破解

3、通信模塊破解

4、API介面暴露

本人正在使用幾維安全Java加密方式,很不錯,向你推薦,希望能夠幫助到你。

幾維安全Java2C針對DEX文件進行加密保護,將DEX文件中標記的Java代碼翻譯為C代碼,編譯成加固後的SO文件。默認情況只加密activity中的onCreate函數,如果開發者想加密其它類和方法,只需對相關類或函數添加標記代碼,在APK加密時會自動對標記的代碼進行加密處理。

與傳統的APP加固方案相比,不涉及到自定義修改DEX文件的載入方式,所以其兼容性非常好;其次Java函數被完全轉化為C函數,直接在Native層執行,不存在Java層解密執行的步驟,其性能和執行效率更優。

如果操作上有不明白的地方,可以聯系技術支持人員幫你完成Java加密。

希望以上解答能夠幫助到你。

⑹ Java中常用的加密演算法有哪些

可以用MD5,也可以用EAS。

⑺ 我想把java文件先加密然後打包,請高手指教怎麼加密,有那種好的加密演算法嗎

RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1

這樣最終得到三個數: n d e

設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。

在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。

rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。

<二>實踐

接下來我們來一個實踐,看看實際的操作:
找兩個素數:
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足e<t並且e和t互素
用perl簡單窮舉可以獲得滿主 e*d%t ==1的數d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847

最終我們獲得關鍵的
n=2773
d=847
e=63

取消息M=244我們看看

加密:

c=M**d%n = 244**847%2773
用perl的大數計算來算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d對M加密後獲得加密信息c=465

解密:

我們可以用e來對加密後的c進行解密,還原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e對c解密後獲得m=244 , 該值和原始信息M相等。

<三>字元串加密

把上面的過程集成一下我們就能實現一個對字元串加密解密的示例了。
每次取字元串中的一個字元的ascii值作為M進行計算,其輸出為加密後16進制
的數的字元串形式,按3位元組表示,如01F

代碼如下:

#!/usr/bin/perl -w
#RSA 計算過程學習程序編寫的測試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;

my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59

my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});

print "N=$N D=$D E=$E\n";

sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);

for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}

sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);

for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}

my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";

my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";

my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";

#EOF

測試一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~

C:\Temp>perl rsa-test.pl 安全焦點(xfocus)
N=2773 D=847 E=63
原始串:安全焦點(xfocus)
加密串:
解密串:安全焦點(xfocus)

<四>提高

前面已經提到,rsa的安全來源於n足夠大,我們測試中使用的n是非常小的,根本不能保障安全性,
我們可以通過RSAKit、RSATool之類的工具獲得足夠大的N 及D E。
通過工具,我們獲得1024位的N及D E來測試一下:

n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951

d=0x10001

e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965

設原始信息
M=

完成這么大數字的計算依賴於大數運算庫,用perl來運算非常簡單:

A) 用d對M進行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

即用d對M加密後信息為:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

B) 用e對c進行解密如下:

m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"

(我的P4 1.6G的機器上計算了約5秒鍾)

得到用e解密後的m= == M

C) RSA通常的實現
RSA簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用RSA 來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。

最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。

----------------------------------------------------------

一個簡單的RSA演算法實現JAVA源代碼:

filename:RSA.java

/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;

/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {

/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;

/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;

/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");

private BigInteger myKey;

private BigInteger myMod;

private int blockSize;

public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}

public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}

/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}

/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

public void decodeFile (String filename) {

FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}

BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));

if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}

/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}

/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;

while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);

s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}

return a;
}

}

在這里提供兩個版本的RSA演算法JAVA實現的代碼下載:

1. 來自於 http://www.javafr.com/code.aspx?ID=27020 的RSA演算法實現源代碼包:
http://zeal.newmenbase.net/attachment/JavaFR_RSA_Source.rar

2. 來自於 http://www.ferrara.linux.it/Members/lucabariani/RSA/implementazioneRsa/ 的實現:
http://zeal.newmenbase.net/attachment/sorgentiJava.tar.gz - 源代碼包
http://zeal.newmenbase.net/attachment/algoritmoRSA.jar - 編譯好的jar包

另外關於RSA演算法的php實現請參見文章:
php下的RSA演算法實現

關於使用VB實現RSA演算法的源代碼下載(此程序採用了psc1演算法來實現快速的RSA加密):
http://zeal.newmenbase.net/attachment/vb_PSC1_RSA.rar

RSA加密的JavaScript實現: http://www.ohdave.com/rsa/
參考資料:http://www.lenovonet.com/proct/showarticle.asp?id=118

⑻ 幾種加密演算法在java中的應用

簡單的Java加密演算法有:
第一種. BASE
Base是網路上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規范。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字元串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。
第二種. MD
MD即Message-Digest Algorithm (信息-摘要演算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD的前身有MD、MD和MD。廣泛用於加密和解密技術,常用於文件校驗。校驗?不管文件多大,經過MD後都能生成唯一的MD值。好比現在的ISO校驗,都是MD校驗。怎麼用?當然是把ISO經過MD後產生MD的值。一般下載linux-ISO的朋友都見過下載鏈接旁邊放著MD的串。就是用來驗證文件是否一致的。
MD演算法具有以下特點:
壓縮性:任意長度的數據,算出的MD值長度都是固定的。
容易計算:從原數據計算出MD值很容易。
抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。
弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。
強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。
MD的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。
第三種.SHA
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該演算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該演算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。
SHA-與MD的比較
因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。
對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-的運行速度比MD慢。
第四種.HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。

⑼ Java 加密解密的方法都有哪些

加密解密並非java才有的,所有編程語言都有加密和解密。

目前的加密解密主要可分為以下2大類:

  1. 對稱秘鑰加密:如DES演算法,3DES演算法,TDEA演算法,Blowfish演算法,RC5演算法,IDEA演算法等。其主要特點是加密方和解密方都有同一個密碼,加密方和解密方可以使用秘鑰任意加密解密。

  2. 非對稱密碼加密:這種加密方式加密方僅有加密秘鑰,對加密後的密文無法反向解密,解密方僅有解密秘鑰,無法對明文進行加密。


另外還有一些摘要演算法,比如MD5和HASH此類演算法不可逆,但經常用來作為確認欄位或者對一些重要匹配信息簽名防止明文內容被修改。

⑽ JAVA使用什麼加密演算法和解密演算法好

簡單的Java加密演算法有:
第一種. BASE
Base是網路上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規范。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字元串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。
第二種. MD
MD即Message-Digest Algorithm (信息-摘要演算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD的前身有MD、MD和MD。廣泛用於加密和解密技術,常用於文件校驗。校驗?不管文件多大,經過MD後都能生成唯一的MD值。好比現在的ISO校驗,都是MD校驗。怎麼用?當然是把ISO經過MD後產生MD的值。一般下載linux-ISO的朋友都見過下載鏈接旁邊放著MD的串。就是用來驗證文件是否一致的。
MD演算法具有以下特點:
壓縮性:任意長度的數據,算出的MD值長度都是固定的。
容易計算:從原數據計算出MD值很容易。
抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。
弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。
強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。
MD的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。
第三種.SHA
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該演算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該演算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。
SHA-與MD的比較
因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。
對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-的運行速度比MD慢。
第四種.HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。

閱讀全文

與java加密演算法哪個好相關的資料

熱點內容
解除電腦加密文件夾 瀏覽:358
androidcheckbox組 瀏覽:546
linux在線安裝軟體 瀏覽:823
如何設置手機安卓版 瀏覽:285
簡歷pdfword 瀏覽:123
鋒雲視頻伺服器網關設置 瀏覽:162
linux伺服器如何查看網卡型號 瀏覽:142
加密相冊誤刪了怎麼恢復 瀏覽:380
安卓代練通怎麼下載 瀏覽:518
知道域名如何查詢伺服器 瀏覽:906
方舟手游怎麼才能進伺服器 瀏覽:289
抖音演算法自動爆音 瀏覽:24
linux修改網卡配置 瀏覽:913
雲伺服器和本地伺服器數據 瀏覽:843
在家如何創業python 瀏覽:225
編譯原理好課 瀏覽:717
python中實數的表示 瀏覽:372
php下載中文名文件 瀏覽:351
哪裡有專門注冊app實名的 瀏覽:273
魔爪mx穩定器app去哪裡下載 瀏覽:469