❶ 數控機床故障排除的一般辦法有哪些
數控機床故障診斷一般包括三個步驟:第一步驟是故障檢測;第二步驟是故障判定及隔離;第三步驟是故障定位。數控機床故障診斷一般採用追蹤法、自診斷、參數檢查、替換法、測量法。
1.追蹤法
追蹤法是指在故障診斷和維修前,維修人員要先對故障發生的時間、機床的運行狀態和故障類型進行詳細的了解,然後尋找產生故障的各種跡象。
追蹤法檢查是一種基本的檢查故障的方法,發向故障後要查找引起故障的根源,採取合理的方法給與排除。
2.自診斷功能
現代數控系統尤其是全功能數控系統具有很強的自診斷功能,通過隨時監控系統各部分的工作,及時判斷故障並立刻在CRT上顯示報警信息。有時當硬體發生故障而不能發出報警信息時,就要通過發光二極體的閃爍來指示故障的大致起因。自診斷一般分為現代數控系統尤其是全功能數控系統具有很強的自診斷功能,通過隨時監控系統各部分的工作,及時判斷故障並立刻在CRT上顯示報警信息。有時當硬體發生故障而不能發出報警信息時,就要通過發光二極體的閃爍來指示故障的大致起因。自診斷一般分為啟動自診斷、在線自診斷和離線自診斷。
啟動診斷是指CNC系統每次從通電開始,系統內部診斷程序就自動執行診斷。診斷的內容為系統中最關鍵的硬體和系統控制軟體,如 CPU、存儲器、I/O 等單元模塊,以及MDI/CRT單元、紙帶閱讀機、軟盤單元等裝置或外部設備。只有當全部項目都確認正確無誤之後,整個系統才能進入正常運行的准備狀態。否則,將在CRT畫面或發光二極體用報警方式指示故障信息。此時起動診斷過程不能結束,系統無法投入運行。
在線診斷是指通過CNC系統的內裝程序,在系統處於正常運行狀態時對CNC系統本身及CNC裝置相連的各個伺服單元、伺服電機、主軸伺服單元和主軸電動機以及外部設備等進行自動診斷、檢查。只要系統不停電,在線診斷就不會停止。
在線診斷一般包括自診斷功能的狀態顯示有上千條,常以二進制的0、1來顯示其狀態。對正邏輯來說,0表示斷開狀態,1表示接通狀態,藉助狀態顯示可以判斷出故障發生的部位。常用的有介面狀態和內部狀態顯示,如利用I/O介面狀態顯示,再結合PLC梯形圖和強電控制線路圖,用推理法和排除法即可判斷出故障點所在的真正位置。故障信息大都以報警號形式出現。一般可分為以下幾大類:過熱報警類;系統報警類;存儲報警類;編程/設定類;伺服類;行程開關報警類;印刷線路板間的連接故障類。
離線診斷是指數控系統出現故障後,數控系統製造廠家或專業維修中心利用專用的診斷軟體和測試裝置進行停機(或離線)檢查。力求把故障定位到盡可能小的范圍內,如縮小到某個功能模塊、某部分電路,甚至某個晶元或元件,這種故障定位更為精確。
3.參數檢查
系統參數是確定系統功能的依據,參數設定錯誤就可能造成系統的故障或某功能無效。發生故障時應及時核對系統參數,參數一般存放在磁泡存儲器或存放在需由電池保持的 CMOS RAM中,一旦電池電量不足或由於外界的干擾等因素,使個別參數丟失或變化,發生混亂,使機床無法正常工作。此時,可通過核對、修正參數,將故障排除。
4.替換法
替換法是在數控系統出現故障時,利用備用電路板、模塊、集成電路晶元及其他元器件代替有疑點的部位,觀察故障點的轉移情況,確定故障點的位置,是一種快速而簡便的找出故障點的方法。當無備用板時,也可以用同型號系統上的元器件來代替。
5.測量法
CNC系統生產廠在設計印刷線路板時,為了調整和維修方便,在印刷線路板上設計了一些檢測端子。維修人員通過測量這些檢測端子的電壓或波形,可檢查有關電路的工作狀態是否正常。但利用檢測端子進行測量之前,應先熟悉這些檢測端子的作用及有關部分的電路或邏輯關系。
❷ 數控車床手工編程中幾個常見問題的處理
隨著數控技術的不斷發展,數控機床的使用量越來越多,尤其在中小型企業和大型企業的修配車間,數控車床單件小批生產的情況也越來越多。而目前這些企業或車間生產零件往往是採用手工編程,刀具也往往是通用硬質合金或高速鋼材料,其耐磨性相對不理想;操作人員在工作過程中大都要進行多次對刀、多次測量,從而多次設定刀補,工作量很大;對於一個零件多次裝夾才能加工完成的,往往要使用多個程序,佔用了系統的內存量;有的數控車床系統指令長時間不用,電器元件老化等原因造成到使用時可能會出現不能用的現象,也影響其使用壽命;編程人員對工件坐標系建立不當,加工質量有時難以得到保證;我在此僅根據自己多年的授課感受和在企業了解的情況,發現了一些關於數控車床編程中常見的幾個問題,並總結出了一點相關規律,現陳述如下。
一、工藝問題
零件加工工藝的合理與否,直接反映和影響其加工質量,也要影響其生產率。不同的零件,其工藝不一樣。例如加工順序問題,如圖所示零件,其基本加工順序應為:
1.夾持右端(夾持長度50mm)車左端?25、?40及倒角達到要求;
2.以?25外圓和?40左端面定位車右端達到要求。
這樣,滿足了基準重合,既容易保證軸向尺寸要求,也容易滿足同軸度要求。
其它工藝問題,這里不再贅述。
二、巧用G50(G92)與M00
靈活和巧妙使用G50(G92)與M00,既可以減少對刀次數,又可以減少程序數量,從而少用系統內存,也提高了生產率 。
如上圖所示零件,車小端對刀端面Z坐標若設定為2(留2mm車端面),當車完後刀具走到(X50 Z37)點(第二對刀點)後使用M00,掉頭可用G50(G92)設對刀點坐標:
G50(G92) X50 Z80
即可按下循環啟動,無需再對刀,節約時間,以提高生產率,且只需一個程序就行了。如果中途不使用 G50(G92)與M00 或其它坐標設定,則需要兩個程序才行。
下面談談第二對刀點Z坐標如何確定:
1.確定第一次裝夾後,車了端面的露出總長度L1
2.確定第二次裝夾厚露出總長度L2
3.計算L=L2-L1+a(a是刀具在對刀點處與工件間的安全距離)
4.第一次裝夾後的坐標系中的Z坐標Z1+L即為第二對刀點在第一次裝夾加工後應移動到的坐標值(Z1:第一對刀點的坐標值)
5.根據第二次裝夾後的基準確定其G50的坐標值,如工件右端面為編程基準,Z為a;如卡盤端面為編程基準,Z為L2+a.,以此類推。
三、編程中基準的問題
編程基準應與設計基準重合,避免出現基準不重合誤差,從而不進行尺寸鏈計算。
如上圖所示零件,車右端應該以?40左端面為軸向(Z坐標)基準,否則除螺紋面和錐面兩個長度尺寸以外,均需要進行尺寸鏈計算,有的尺寸很難達到圖紙要求!
四、編程中絕對坐標與增量坐標的使用問題
合理使用絕對坐標與增量坐標可以在編程中簡化計算和便於保證質量。
如上圖所示零件,螺紋面與錐面的長度尺寸如果採用絕對坐標編程,需要進行尺寸鏈計算,增加了計算工作量,且難達到圖紙要求,採用增量坐標就不需進行尺寸鏈計算了,也很容易達到要求。
五、編程中徑向尺寸的確定
編程中徑向尺寸的確定準確與否,在數控加工的手工編程過程中有著非常重要的意義。一方面影響操作人員的工作量,一方面又要影響生產率。我認為如果採用下述方法確定既可以減少因刀具磨損使操作人員多次進行刀補設定的工作量,又可以提高生產率。
1.如為自由公差,按基本尺寸計算坐標;
2.如有公差,按最小實體尺寸原則計算坐標;
1)外輪廓尺寸,按最小極限尺寸計算;
2)內輪廓尺寸,按最大極限尺寸計算。
六、系統中的指令代碼問題與螺紋加工切入點問題
系統中每一個指令都有其特殊含義,在編程中,應根據加工性質採用合理的加工指令和合理的切入點(特別是螺紋加工的切入點),這對保證加工質量有著很重要的意義,這里就不多說了,下面以一個具體實例說明之。
綜上所述,數控車床在單件小批生產中,只要把工藝解決好、編程基準選擇好、基點坐標計算準確、絕對/增量坐標使用得當、對刀點指令使用靈活,既可以減輕操作人員的工作量,提高生產率,又可以使工件質量容易得到保證;編程時根據加工要求和系統指令特點,合理使用指令,既可以使加工質量容易得到保證,提高生產率,又可以使數控系統中的電器元件在工作中得到保養,提高其使用壽命。
❸ 數控機床故障診斷的常用方法是哪些
(2)根據動作順序診斷故障
數控機床上刀具及托盤等裝置的自動交換動作,都是按一定的順序來完成因此,觀察機械裝置的運動過程,比較故障和正常時的情況,就可發現疑點,診斷出故障原因。
(3)根據控制對象的工作原理診斷故障
數控機床的plc程序是按照控制對象的工作原理設計的,通過對控制對象工作原理的分析,結合plc的i/o狀態是診斷故障很有效的方法。
(4)根據plc的i/o狀態診斷故障
在數控機床中,輸入/輸出信號的傳遞,一般要通過plc的i/o介面來實現,因此一些故障會在plc的i/o介面通道上反映出來。數控機床的這個特點為故障診斷提供了方便。如果不是數控系統硬體故障,可以不必查看梯形圖和有關電路圖,通過查詢plc的i/o通常狀態和故障狀態來進行診斷。
另外一種簡單實用的方法,就是將數控機床的輸入/輸出狀態列表,通過比較通常狀態和故障狀態,就能迅速診斷出故障部位。
(5)通過plc梯形圖診斷故障
根據plc的梯形圖來分析和診斷故障是解決數控機床外圍故障的基本方法。如
果採用這種方法診斷機床故障,首先應該查清機床的工作原理、動作順序和連鎖關系,然後利用cnc系統的自診斷功能或通過機外編程器,根據plc梯形圖查看相關的輸入、輸出及標志的狀態,以確定故障原因。
(6)動態跟蹤梯形圖診斷故障
有些plc發生故障時,查看輸入/輸出及標志狀態均為正常,此時必須通過plc動態跟蹤,實時跟蹤輸入/輸出及標志狀態的瞬間變化。根據plc動作原理作出診斷。
綜上所述,plc故障診斷的要點是:要了解數控機床各部分檢測開關的安裝位置。如加工中心的刀庫,機械手和回轉工作台,數控車床的旋轉刀架和尾架,機床的氣、液壓系統中的限位開關,接近開關和壓力開關等,要清楚檢測開關作為plc輸入信號的標志。要了解執行機構的動作順序。如液壓缸、氣缸的電磁換向閥等,要清楚對應的plc輸出信號標志。要了解各種條件標志。如啟動、停止、限位、夾緊和放鬆等標志信號藉助編程器跟蹤梯形圖的動態變化,分析故障的原因,根據機床的工作原理作出正確的診斷。
❹ 數控編程問題
在數控編程中,常遇到的問題有撞刀、彈刀、過切、漏加工、多餘的加工、空刀過多、提刀過多和刀路凌亂等問題,本文總結了這些常見數控編程問題的解決方法,歡迎轉發收藏。
一、撞刀
撞刀是指刀具的切削量過大,除了切削刃外,刀桿也撞到了工件。造成撞刀的原因主要是安全高度設置不合理或根本沒設置安全高度、選擇的加工方式不當、刀具使用不當和二次開粗時餘量的設置比第一次開粗設置的餘量小等。
1. 吃刀量過大
❺ 怎麼排除數控機床的常見故障
數控系統故障維修通常按照:現場故障的診斷與分析、故障的測量維修排除、系統的試車這三大步進行。
1、數控機床故障診斷
在故障診斷時應掌握以下原則:
1.1 先外部後內部
現代數控系統的可靠性越來越高,數控系統本身的故障率越來越低,而大部分故障的發生則是非系統本身原因引起的。由於數控機床是集機械、液壓、電氣為一體的機床,其故障的發生也會由這三者綜合反映出來。維修人員應先由外向內逐一進行排查。盡量避免隨意地啟封、拆卸,否則會擴大故障,使機床喪失精度、降低性能。系統外部的故障主要是由於檢測開關、液壓元件、氣動元件、電氣執行元件、機械裝置等出現問題而引起的。
1.2 先機械後電氣
一般來說,機械故障較易發覺,而數控系統及電氣故障的診斷難度較大。在故障檢修之前,首先注意排除機械性的故障。
1.3 先靜態後動態
先在機床斷電的靜止狀態,通過了解、觀察、測試、分析,確認通電後不會造成故障擴大、發生事故後,方可給機床通電。在運行狀態下,進行動態的觀察、檢驗和測試,查找故障。而對通電後會發生破壞性故障的,必須先排除危險後,方可通電。
1.4 先簡單後復雜
當出現多種故障互相交織,一時無從下手時,應先解決容易的問題,後解決難度較大的問題。往往簡單問題解決後,難度大的問題也可能變得容易。
2、數控機床的故障診斷技術
數控系統是高技術密集型產品,要想迅速而正確的查明原因並確定其故障的部位,要藉助於診斷技術。隨著微處理器的不斷發展,診斷技術也由簡單的診斷朝著多功能的高級診斷或智能化方向發展。診斷能力的強弱也是評價CNC數控系統性能的一項重要指標。目前所使用的各種CNC系統的診斷技術大致可分為以下幾類:
2.1 起動診斷
起動診斷是指CNC系統每次從通電開始,系統內部診斷程序就自動執行診斷。診斷的內容為系統中最關鍵的硬體和系統控制軟體,如 CPU、存儲器、I/O 等單元模塊,以及MDI/CRT單元、紙帶閱讀機、軟盤單元等裝置或外部設備。只有當全部項目都確認正確無誤之後,整個系統才能進入正常運行的准備狀態。否則,將在CRT畫面或發光二極體用報警方式指示故障信息。此時起動診斷過程不能結束,系統無法投入運行。
2.2 在線診斷
在線診斷是指通過CNC系統的內裝程序,在系統處於正常運行狀態時對CNC系統本身及CNC裝置相連的各個伺服單元、伺服電機、主軸伺服單元和主軸電動機以及外部設備等進行自動診斷、檢查。只要系統不停電,在線診斷就不會停止。
在線診斷一般包括自診斷功能的狀態顯示有上千條,常以二進制的0、1來顯示其狀態。對正邏輯來說,0表示斷開狀態,1表示接通狀態,藉助狀態顯示可以判斷出故障發生的部位。常用的有介面狀態和內部狀態顯示,如利用I/O介面狀態顯示,再結合PLC梯形圖和強電控制線路圖,用推理法和排除法即可判斷出故障點所在的真正位置。故障信息大都以報警號形式出現。一般可分為以下幾大類:過熱報警類;系統報警類;存儲報警類;編程/設定類;伺服類;行程開關報警類;印刷線路板間的連接故障類。
2.3 離線診斷
離線診斷是指數控系統出現故障後,數控系統製造廠家或專業維修中心利用專用的診斷軟體和測試裝置進行停機(或離線)檢查。力求把故障定位到盡可能小的范圍內,如縮小到某個功能模塊、某部分電路,甚至某個晶元或元件,這種故障定位更為精確。
2.4 現代診斷技術
隨著電信技術的發展,IC和微機性價比的提高,近年來國外已將一些新的概念和方法成功地引用到診斷領域。
(1) 通信診斷
也稱遠程診斷,即利用電話通訊線把帶故障的CNC系統和專業維修中心的專用通訊診斷計算機通過連接進行測試診斷。如西門子公司在CNC系統診斷中採用了這種診斷功能,用戶把CNC系統中專用的「通信介面」連接在普通電話線上,而兩門子公司維修中心的專用通迅診斷計算機的「數據電話」也連接到電話線路上,然後由計算機向 CNC系統發送診斷程序,並將測試數據輸回到計算機進行分析並得出結論,隨後將診斷結論和處理辦法通知用戶。
通訊診斷系統還可為用戶作定期的預防性診斷,維修人員不必親臨現場,只需按預定的時間對機床作一系列運行檢查,在維修中心分析診斷數據,可發現存在的故障隱患,以便及早採取措施。當然,這類CNC系統必須具備遠程診斷介面及聯網功能。
(2) 自修復系統
就是在系統內設置有備用模塊,在CNC系統的軟體中裝有自修復程序,當該軟體在運行時一旦發現某個模塊有故障時,系統一方面將故障信息顯示在CRT上,同時自動尋找是否有備用模塊,如有備用模塊,則系統能自動使故障離線,而接通備用模塊使系統能較快地進入正常工作狀態。這種方案適用於無人管理的自動化工作場合。
需要注意的是:機床在實際使用中也有些故障既無報警,現象也不是很明顯,對這種情況,處理起來就不那樣簡單了。另外有此設備出現故障後,不但無報警信息,而且缺乏有關維修所需的資料。對這類故障的診斷處理,必須根據具體情況仔細檢查,從現象的微小之處進行分析,找出它的真正原因。要查清這類故障的原因,首先必須從各種表面現象中找山它的真實故障現象,再從確認的故障現象中找出發生的原因。全面地分析一個故障現象是決定判斷是否正確的重要因素。在查找故障原因前,首先必須了解以下情況:故障是在正常工作中出現還是剛開機就出現的;山現的次數是第一次還是已多次發生;確認機床加工程序的正確性;是否有其他人
3、數控機床的常見故障排除方法
由於數控機床故障比較復雜,同時數控系統自診斷能力還不能對系統的所有部件進行測試,往往是一個報警號指示出眾多的故障原因,使人難以入手。下面介紹維修人員任生產實踐中常用的排除故障方法。
3.1直觀檢查法
直觀檢查法是維修人員根據對故障發生時的各種光、聲、味等異常現象的觀察,確定故障范圍,可將故障范圍縮小到一個模塊或一塊電路板上,然後再進行排除。一般包括:
a.詢問:向故障現場人員仔細詢問故障產生的過程、故障表象及故障後果等;
b.目視:總體查看機床各部分工作狀態是否處於正常狀態,各電控裝置有無報警指示,局部查看有無保險燒斷,元器件燒焦、開裂、電線電纜脫落,各操作元件位置正確與否等等;
c.觸摸:在整機斷電條件下可以通過觸摸各主要電路板的安裝狀況、各插頭座的插接狀況、各功率及信號導線的聯接狀況以及用手摸並輕搖元器件,尤其是大體積的阻容、半導體器件有無松動之感,以此可檢查出一些斷腳、虛焊、接觸不良等故障;
d.通電:是指為了檢查有無冒煙、打火,有無異常聲音、氣味以及觸摸有無過熱電動機和元件存在而通電,一旦發現立即斷電分析。如果存在破壞性故障,必須排除後方可通電。
例:一台數控加工中心在運行一段時間後,CRT顯示器突然出現無顯示故障,而機床還可繼續運轉。停機後再開又一切正常。觀察發現,設備運轉過程中,每當發生振動時故障就可能發生。初步判斷是元件接觸不良。當檢查顯示板時,CRT顯示突然消失。檢查發現有一晶振的兩個引腳均虛焊松動。重新焊接後,故障消除。
3.2 初始化復位法
一般情況下,由於瞬時故障引起的系統報警,可用硬體復位或開關系統電源依次來清除故障。若系統工作存貯區由於掉電、撥插線路板或電池欠壓造成混亂,則必須對系統進行初始化清除,清除前應注意作好數據拷貝記錄,若初始化後故障仍無法排除,則進行硬體診斷。
例:一台數控車床當按下自動運行鍵,微機拒不執行加工程序,也不顯示故障自檢提示,顯示屏幕處於復位狀態(只顯示菜單)。有時手動、編輯功能正常,檢查用戶程序、各種參數完全正確;有時因記憶電池失效,更換記憶電池等,系統顯示某一方向尺寸超量或各方向的尺寸都超最(顯示尺寸超過機床實斤能加工的最大尺寸或超過系統能夠認可的最大尺寸)。排除方法:採用初始化復位法使系統清零復位(一般要用特殊組合健或密碼)。3.3 自診斷法
數控系統已具備了較強的自診斷功能,並能隨時監視數控系統的硬體和軟體的工作狀態。利用自診斷功能,能顯示出系統與主機之間的介面信息的狀態,從而判斷出故障發生在機械部分還是數控部分,並顯示出故障的大體部位(故障代碼)。
a.硬體報警指示:是指包括數控系統、伺服系統在內的各電氣裝置上的各種狀態和故障指示燈,結合指示燈狀態和相應的功能說明便可獲知指示內容及故障原因與排除方法;
b.軟體報警指示:系統軟體、PLC程序與加工程序中的故障通常都設有報警顯示,依據顯示的報警號對照相應的診斷說明手冊便可獲知可能的故障原因及排除方法。
功能程序測試法是將數控系統的G、M、S、T、F功能用編程法編成一個功能試驗程序,並存儲在相應的介質上,如紙帶和磁帶等。在故障診斷時運行這個程序,可快速判定故障發生的可能起因。
功能程序測試法常應用於以下場合:
a.機床加工造成廢品而一時無法確定是編程操作不當、還是數控系統故障引起;
b. 數控系統出現隨機性故障,一時難以區別是外來干擾,還是系統穩定性個好;
c. 閑置時間較長的數控機床在投入使用前或對數控機床進行定期檢修時。
例:一台FANUC9系統的立式銑床在自動加工某一曲線零件時出現爬行現象,表面粗糙度極差。在運行測試程序時,直線、圓弧插補時皆無爬行,由此確定原因在編程方面。對加工程序仔細檢查後發現該曲線由很多小段圓弧組成,而編程時又使用了正確定位外檢查C61指令之故。將程序中的G61取消,改用G64後,爬行現象消除。
3.5 備件替換法
用好的備件替換診斷出壞的線路板,即在分析出故障大致起因的情況下,維修人員可以利用備用的印刷電路板、集成電路晶元或元器件替換有疑點的部分,從而把故障范圍縮小到印刷線路板或晶元一級。並做相應的初始化起動,使機床迅速投入正常運轉。
對於現代數控的維修,越來越多的情況採用這種方法進行診斷,然後用備件替換損壞模塊,使系統正常工作。盡最大可能縮短故障停機時間,使用這種方法在操作時注意一定要在停電狀態下進行,還要仔細檢查線路板的版本、型號、各種標記、跨接是否相同,若不一致則不能更換。拆線時應做好標志和記錄。
一般不要輕易更換CPU板、存儲器板及電地,否則有可能造成程序和機床參數的丟失,使故障擴大。
例:一台採用西門子SINUMERIK SYSTEM 3系統的數控機床,其PLC采川S5—130w/B,一次發生故障時,通過NC系統PC功能輸入的R參數,在加工中不起作用,不能更改加上程序中R參數的數值。通過對NC系統工作原理及故障現象的分析,認為PLC的主板有問題,與另一台機床的主板對換後,進一步確定為PLC主板的問題。經專業廠家維修,故障被排除。
3.6 交叉換位法
當發現故障板或者個能確定是否是故障板而又沒有備件的情況下,可以將系統中相同或相兼容的兩個板互換檢查,例如兩個坐標的指令板或伺服板的交換,從中判斷故障板或故障部位。這種交叉換位法應特別注意,不僅要硬體接線的正確交換,還要將一系列相應的參數交換,否則不僅達不到目的,反而會產生新的故障造成思維混亂,一定要事先考慮周全,設計好軟、硬體交換方案,准確無誤再行交換檢查。
例:一台數控車床出現X向進給正常,Z向進給出現振動、噪音大、精度差,採用手動和手搖脈沖進給時也如此。觀察各驅動板指示燈亮度及其變化基本正常,疑是Z軸步進電動機及其引線開路或Z軸機械故障。遂將Z軸電機引線換到X軸電機上,X軸電機運行正常,說明Z軸電動機引線正常;又將X軸電機引線換到Z軸電機上,故障依舊;可以斷定是Z軸電動機故障或Z軸機械故障。測量電動機引線,發現一相開路。修復步進電動機,故障排除。
3.7 參數檢查法
系統參數是確定系統功能的依據,參數設定錯誤就可能造成系統的故障或某功能無效。發生故障時應及時核對系統參數,參數一般存放在磁泡存儲器或存放在需由電池保持的 CMOS RAM中,一旦電池電量不足或由於外界的干擾等因素,使個別參數丟失或變化,發生混亂,使機床無法正常工作。此時,可通過核對、修正參數,將故障排除。
例:一台數控銑床上採用了測量循環系統,這一功能要求有一個背景存貯器,調試時發現這一功能無法實現。檢查發現確定背景存貯器存在的數據位沒有設定,經設定後該功能正常。
又如:一台數控車床數控刀架換對突然出現故障,系統無法自動運行,在手動換刀時,總要過一段時間才能再次換刀。遂對刀補等參數進行檢查,發現一個手冊上沒有說明的參數P20變為20,經查有關資料P20是刀架換刀時間參數,將其清零,故障排除。
有時由於用戶程序和參數錯誤亦可造成故障停機,對此可以採用系統的程序自診斷功能進行檢查,改正所有錯誤,以確保其正常運行。
3.8 測量比較法
CNC系統生產廠在設計印刷線路板時,為了調整和維修方便,在印刷線路板上設計了一些檢測端子。維修人員通過測量這些檢測端子的電壓或波形,可檢查有關電路的工作狀態是否正常。但利用檢測端子進行測量之前,應先熟悉這些檢測端子的作用及有關部分的電路或邏輯關系。
3.9 敲擊法
當系統故障表現為有時正常有時不正常時,基本可以斷定為元器件接觸不良或焊點開焊,利用敲擊法檢查時,當敲擊到虛焊或接觸不良的故障部位時,故障就會出現。
3.10 局部升溫法
數控系統經過長期運行後元件均要老化,性能變壞。當它們尚未完全損壞時,出現的故障就會時有時無。這時用電烙鐵或電吹風對被懷疑的元件進行局部加溫,會使故障快速出現。操作時,要注意元器件的溫度參數等,注意不要損壞好的元器件。
3.11 原理分析法
根據數控系統的組成原理,可從邏輯上分析各點的邏輯電平和特性參數,如電壓值和波形,使用儀器儀表進行測量、分析、比較,從而確定故障部位。
除以上常用的故障檢測方法之外,還可以採用拔插板法、電壓拉偏法、開環檢測法等。總之,根據不同的故障現象,可以同時選用幾個方法靈活應用、綜合分析,才能逐步縮小故障范圍,較快地排除故障。
4、數控機床維修後的開機調試
機床的故障排除後通常分兩大步進行通電試車:
4.1 自動狀態試驗
將機床鎖住,用編制的程序進行空運轉試驗,驗證程序的正確性,然後放開機床,分別將進給倍率開關、快速超凋開關、主軸速度超調開關進行多種變化,使機床在上述各開關的多種變化的情況下進行充分地運行,後將各超調開關置於100%處,使機床充分運行,觀察整機的工作情況是否正常。
4.2 正常加工試驗
夾裝好工件按正常程序進行加工,加工後檢查工件的加工精度是否符合標准要求
5、維修調試後的技術處理
在現場維修結束後,應認真填寫維修記錄,列出有關必備的備件清單,建立用戶檔案。對於故障時間、現象、分析診斷方法、採用排故方法,如果有遺留問題應詳盡記錄,這樣不僅使每次故障都有據可查,而且也可以不斷積累維修經驗。
❻ 數控系統有哪些常見故障
數控系統常見故障:
1、位置環
這是數控系統發出控制指令,並與位置檢測系統的反饋值相比較,進一步完成控制任務的關鍵環節。它具有很高的工作頻度,並與外設相聯接,所以容易發生故障。
常見的故障有:①位控環報警:可能是測量迴路開路;測量系統損壞,位控單元內部損壞。②不發指令就運動,可能是漂移過高,正反饋,位控單元故障;測量元件損壞。③測量元件故障,一般表現為無反饋值;機床回不了基準點;高速時漏脈沖產生報警可能的原因是光柵或讀頭臟了;光柵壞了。
2、伺服驅動系統
伺服驅動系統與電源電網,機械繫統等相關聯,而且在工作中一直處於頻繁的啟動和運行狀態,因而這也是故障較多的部分。
3、電源部分
電源是維持系統正常工作的能源支持部分,它失效或故障的直接結果是造成系統的停機或毀壞整個系統。一般在歐美國家,這類問題比較少,在設計上這方面的因素考慮的不多,但在中國由於電源波動較大,質量差,還隱藏有如高頻脈沖這一類的干擾,加上人為的因素(如突然拉閘斷電等)。這些原因可造成電源故障監控或損壞。另外,數控系統部分運行數據,設定數據以及加工程序等一般存貯在RAM存貯器內,系統斷電後,靠電源的後備蓄電池或鋰電池來保持。因而,停機時間比較長,拔插電源或存貯器都可能造成數據丟失,使系統不能運行。
數控系統是數字控制系統的簡稱,英文名稱為(NumericalControlSystem),根據計算機存儲器中存儲的控製程序,執行部分或全部數值控制功能,並配有介面電路和伺服驅動裝置的專用計算機系統。通過利用數字、文字和符號組成的數字指令來實現一台或多台機械設備動作控制,它所控制的通常是位置、角度、速度等機械量和開關量。
❼ 數控車床常見故障有哪些
數控機床是製造行業中的重要機械設備,其有序穩定的運行,直接關系著工廠的良性運行。數控機床作為高精密機械設備,在使用過程中常發生一些故障,掌握一定的故障識別與解決辦法,是每一位機床工人都需要具備的技能。
機床的故障分類,為確定性故障和隨機性故障。
確定性故障是指控制系統主機中的硬體損壞或者只要滿足一定條件,數控機床必然會發生某些故障。這類故障普遍具有不可恢復性,如放任不處理,數控機床將不能恢復正常運行。
隨機性故障是指數控機床在運行過程中偶然發生的故障,這類故障具有一定的隱蔽性,很難找到原因,故障的發生往往與參數的設定、部件的安裝質量、軟體設計問題甚至工作環境相關,具有可恢復性,然而重啟運行一段時間後,依然有發生同樣故障的可能。
避免確定性故障,關鍵在於精心的維護,而隨機性故障的避免,要加強數控系統的維護和監察,確保電氣箱的密封,配合可靠的安裝、連接,正確的接地和屏蔽,杜絕隨機性故障的發生。
數控機床常見的故障問題有以下幾種:
一、主軸部件故障
數控機床的主軸結構中,刀具自動夾緊結構、自動調速裝置較容易出現故障,若刀具夾緊後不能松開,則考慮調整松刀液壓缸壓力和行程開關裝置,或調整碟形彈簧上的螺母,減小彈簧壓合量。
二、進給傳動鏈故障
當機械部件未運行到規定位置、定位精度下降、爬行、反向間隙增大,則考慮進給傳動鏈發生故障,要通過提高傳動精度、提高轉動剛度、提高運動精度、對滾動導軌進行防護。
三、自動換刀裝置故障
當加工中心機械手臂發生旋轉速度快慢不均、手臂升降不動作、機械手旋轉不到位等現象,考慮自動換刀裝置出現故障。可以通過修復液壓缸內壁,更換支撐環O形圈,重裝調整試車流程來處理故障。
四、電器控制系統故障
電器控制系統故障分為「弱電」故障和「強電」故障兩大類。弱電故障又有硬體故障與軟體故障之分,硬體故障是指各局部的集成電路晶元,分立電子元件、接插件以及外部銜接組件等發作的故障,軟體故障是指加工程序出錯,計算機運轉出錯等。
強電故障是指控制系統中的主迴路或高壓、大功率迴路中的開關、熔斷器、電動機、電磁鐵、接觸器等電氣元器件及其所組成的控制電路出現故障。強電故障發作概率高於弱電故障,必須引起注意。
❽ 數控機床常見外部故障都有哪些處理解決措施
由於現代的數控系統可變性越來越高,故障率越來越低,很少發生故障。大部分故障都是非系統故障,是由外部原因引起的。
1、現代的數控設備都是機電一體化的產品,結構比較復雜,保護措施完善,自動化程度非常高。有些故障並不是硬體損壞引起的,而是由於操作、調整、處理不當引起的。這類故障在設備使用初期發生的頻率較高,這時操作人員和維護人員對設備都不特別熟悉。
例一、一台數控銑床,在剛投入使用的時候,旋轉工作台經常出現不旋轉的問題,經過對機床工作原理和加工過程進行分析,發現這個問題與分度裝置有關,只有分度裝置在起始位置時,工作台才能旋轉。
例二、另一台數控銑床發生打刀事故,按急停按鈕後,換上新刀,但工作台不旋轉,通過PLC梯圖分析,發現其換刀過程不正確,計算機認為換刀過程沒有結束,不能進行其它操作,按正確程序重新換刀後,機床恢復正常。
例三、有幾台數控機床,在剛投入使用的時候,有時出現意外情況,操作人員按急停按鈕後,將系統斷電重新啟動,這時機床不回參考點,必須經過一番調整,有時得手工將軸盤到非干涉區。後來吸取教訓,按急停按鈕後,將操作方式變為手動,松開急停按鈕,把機床恢復到正常位置,這時再操作或斷電,就不會出現問題。
2、由外部硬體損壞引起的故障
這類故障是數控機床常見故障,一般都是由於檢測開關、液壓系統、氣動系統、電氣執行元件、機械裝置等出現問題引起的。有些故障可產生報警,通過報答信息,可查找故障原因。
例一、一台數控磨床,數控系統採用西門子SINUMERIKSYSTEM3,出現故障報警F31「SPINDLECOOLANTCIRCUIT」,指示主軸冷卻系統有問題,而檢查冷卻系統並無問題,查閱PLC梯圖,這個故障是由流量檢測開關B9.6檢測出來的,檢查這個開關,發現開關已損壞,更換新的開關,故障消失。
例二、一台採用西門子SINUMERIK810的數控淬火機床,一次出現6014「FAULTLEVELHARDENINGLIQUID」機床不能工作。報警信息指示,淬火液面不夠,檢查液面已遠遠超出最低水平,檢測液位開關,發現是液位開關出現問題,更換新的開關,故障消除。
有些故障雖有報警信息,但並不能反映故障的根本原因。這時要根據報警信息、故障現象來分析。
例三、一台數控磨床,E軸在回參考點時,E軸旋轉但沒有找到參考點,而一直運動,直到壓到極限開關,NC系統顯示報警「EAXISATMAX.TRAVEL」。根據故障現象分析,可能是零點開關有問題,經確認為無觸點零點開關損壞,更換新的開關,故障消除。
例四、一台專用的數控銑床,在零件批量加工過程中發生故障,每次都發生在零件已加工完畢,Z軸後移還沒到位,這時出現故障,加工程序中斷,主軸停轉,並顯示F97號報警「SPINDLESPEEDNOTOKSTATION2」,指示主軸有問題,檢查主軸系統並無問題,其它問題也可導致主軸停轉,於是我們用機外編程器監視PLC梯圖的運行狀態,發現刀具液壓卡緊壓力檢測開關F21.1,在出現故障時,瞬間斷開,它的斷開表示銑刀卡緊力不夠,為安全起見,PLC使主軸停轉。經檢查發現液壓壓力不穩,調整液壓系統,使之穩定,故障被排除。
還有些故障不產生故障報警,只是動作不能完成,這時就要根據維修經驗,機床的工作原理,PLC的運行狀態來判斷故障。
例五、一台數控機床一次出現故障,負載門關不上,自動加工不能進行,而且無故障顯示。這個負載門是由氣缸來完成開關的,關閉負載門是PLC輸出Q2.0控制電磁閥Y2.0來實現的。用NC系統的PC功能檢查PLCQ2.0的狀態,其狀態為1,但電磁閥卻沒有得電。原來PLC輸出Q2.0通過中間繼電器控制電磁閥Y2.0,中間繼電器損壞引起這個故障,更換新的繼電器,故障被排除。
例六、一台數控機床,工作台不旋轉,NC系統沒有顯示故障報警。根據工作台的動作原理,工作台旋轉第一步應將工作台氣動浮起,利用機外編程器,跟蹤PLC梯圖的動態變化,發現PLC這個信號並未發出,根據這個線索繼續查看,最後發現反映二、三工位分度頭起始位置檢測開關I9.7、I10.6動作不同步,導致了工作台不旋轉。進一步確認為三工位分度頭產生機械錯位,調整機械裝置,使其與二工位同步,這樣使故障消除。
發現問題是解決問題的第一步,而且是最重要的一步。特別是對數控機床的外部故障,有時診斷過程比較復雜,一旦發現問題所在,解決起來比較輕松。對外部故障的診斷,我們總結出兩點經驗,首先應熟練掌握機床的工作原理和動作順序。其次要熟練運用廠方提供的PLC梯圖,利用NC系統的狀態顯示功能或用機外編程器監測PLC的運行狀態,根據梯圖的鏈鎖關系,確定故障點,只要做到以上兩點,一般數控機床的外部故障,都會被及時排除。