導航:首頁 > 編程語言 > 通過python學習演算法

通過python學習演算法

發布時間:2023-11-20 03:38:24

『壹』 python學習該怎麼入門

由於我們是零基礎學習python的,對於python的入門

首先會學習python基礎語法,面向對象編程與程序設計模式的理解、python數據分析基礎、python網路編程、python並發與高效編程等等。

通過前期python學習來了解和掌握常量變數的使用,運算符的使用、流程式控制制的使用等,最後掌握python編程語言的基礎內容。

並會對常見數據結構和相應演算法進行學習,注重表格的處理,樹結構的處理知識。

第二階段主要學習內容是web頁面開發、web頁面特效開發、數據持久化開發、linux運維開發、linux測試開發、伺服器集群架構等等。

對js的掌握並在網路前端中使用,而且需要詳細將js學習並掌握,為將來從事全棧工作打下基礎,也會學習linux操作系統的基礎知識和掌握linux操作系統常用命令,並會學習linux自動化運維技巧等。

第三階段主要學習網路爬蟲,數據分析加人工智慧:

這一個階段需要學習的內容也是比較多的,例如:爬蟲與數據、多線程爬蟲、go語言、NoSQL資料庫、Scrapy-Redis框架。

需要掌握爬蟲的工作原理和設計思想,掌握反爬蟲機制,並且通過學習NoSQL資料庫和Scrapy-Redis框架,並且可以使用分布式爬蟲框架實現大量數據的獲取。

數據分析和人工智慧階段需要學習的數據分析、人工智慧深度學習、量化交易模型、數據分析-特徵工程和結果可視化和人工智慧機器學習等等。

需要理解隨機變數的數字特徵的概念和性質,並會利用性質計算隨機變數的數字特徵,了解可視化過程,圖形繪制。並且需要掌握Matplotlib模塊、常用的機器學習演算法等等。

最後就是對於python的入門學習,我們在學習理論、學習python語法基礎的同時我們應該多動手、多聯系。但是呢,對於我們零基礎的小夥伴呢,一般不建議自學。

你肯定要問為什麼?我就知道!原因大概有三點:

首先我們自學雖然成本低、學習時間靈活等,但是你想過沒,你要自學到就業的程度大概需要多長時間,辭職在家學習,或者買個網課,每天聽課、練,你可能需要1年左右,就這你還不一定能夠學會、換不一定能夠全面掌握企業需要的技術;然後報班學習的學員都已經學完工作半年了。

其次就是學習知識的系統性、前沿性。IT行業的學習一定要系統,不能說我們這里一點那裡學一點,完了全是一片一片的知識點,聽起來你都有涉及但是真正做項目反而使用不起來,很耽誤時間。其次就是前沿性,學習時一定要選擇最新的課程大綱、最新的課程。IT行業的技術更新很快。

最後就是就業服務和保障,我們選擇報班學習一般都有就業服務,當然我們在學習完也會進行模擬面試和簡歷指導的等工作。其次就是服務,一般培訓機構都有合作企業來招聘,大大增加了我們的就業機會。

總而言之你是零基礎選擇培訓絕對是最快速的轉行入門途徑!

『貳』 用python實現紅酒數據集的ID3,C4.5和CART演算法

ID3演算法介紹
ID3演算法全稱為迭代二叉樹3代演算法(Iterative Dichotomiser 3)
該演算法要先進行特徵選擇,再生成決策樹,其中特徵選擇是基於「信息增益」最大的原則進行的。
但由於決策樹完全基於訓練集生成的,有可能對訓練集過於「依賴」,即產生過擬合現象。因此在生成決策樹後,需要對決策樹進行剪枝。剪枝有兩種形式,分別為前剪枝(Pre-Pruning)和後剪枝(Post-Pruning),一般採用後剪枝。
信息熵、條件熵和信息增益
信息熵:來自於香農定理,表示信息集合所含信息的平均不確定性。信息熵越大,表示不確定性越大,所含的信息量也就越大。
設x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1

,x
2

,x
3

,...x
n

為信息集合X的n個取值,則x i x_ix
i

的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i

,i=1,2,3,...,n

信息集合X的信息熵為:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1

n

p
i

logp
i

條件熵:指已知某個隨機變數的情況下,信息集合的信息熵。
設信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1

,y
2

,y
3

,...y
m

組成的隨機變數集合Y,則隨機變數(X,Y)的聯合概率分布為
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij

條件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1

m

p(y
j

)H(X∣y
j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j

)=−
j=1

m

p(y
j

)
i=1

n

p(x
i

∣y
j

)logp(x
i

∣y
j

)
和貝葉斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i

y
j

)=p(x
i

∣y
j

)p(y
j

)
可以化簡條件熵的計算公式為:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1

m

i=1

n

p(x
i

,y
j

)log
p(x
i

,y
j

)
p(x
i

)

信息增益:信息熵-條件熵,用於衡量在知道已知隨機變數後,信息不確定性減小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)

python代碼實現
import numpy as np
import math

def calShannonEnt(dataSet):
""" 計算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy

def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特徵列label等於value,並且過濾掉改特徵列的數據集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)

def chooseFeature(dataSet):
""" 通過計算信息增益選擇最合適的特徵"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0

for v in uniqueValues: #計算條件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #計算信息增益

if infoGain >= bestInfoGain: #選擇最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):
""" 通過訓練集生成決策樹 """
featureName = featNames[:] # 拷貝featNames,此處不能直接用賦值操作,否則新變數會指向舊變數的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一個類別
return classList[0]
if dataSet.shape[1] == 1: #當所有特徵屬性都利用完仍然無法判斷樣本屬於哪一類,此時歸為該數據集中數量最多的那一類
return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #選擇特徵
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已選特徵列
decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已選特徵列所包含的類別, 通過遞歸生成決策樹
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree

def classify(decisionTree, featnames, featList):
""" 使用訓練所得的決策樹進行分類 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子節點仍是樹,則遞歸查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鳶尾花數據集對該演算法進行測試。由於ID3演算法只能用於標稱型數據,因此用在對連續型的數值數據上時,還需要對數據進行離散化,離散化的方法稍後說明,此處為了簡化,先使用每一種特徵所有連續性數值的中值作為分界點,小於中值的標記為1,大於中值的標記為0。訓練1000次,統計准確率均值。

from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]

scoreL = []
for i in range(1000): #對該過程進行10000次
trainData, testData = train_test_split(data) #區分測試集和訓練集

featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #對訓練集每個特徵,以中值為分界點進行離散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
輸出結果為:score: 0.7335,即准確率有73%。每次訓練和預測的准確率分布如下:

數據離散化
然而,在上例中對特徵值離散化的劃分點實際上過於「野蠻」,此處介紹一種通過信息增益最大的標准來對數據進行離散化。原理很簡單,當信息增益最大時,說明用該點劃分能最大程度降低數據集的不確定性。
具體步驟如下:

對每個特徵所包含的數值型特徵值排序
對相鄰兩個特徵值取均值,這些均值就是待選的劃分點
用每一個待選點把該特徵的特徵值劃分成兩類,小於該特徵點置為1, 大於該特徵點置為0,計算此時的條件熵,並計算出信息增益
選擇信息使信息增益最大的劃分點進行特徵離散化
實現代碼如下:

def filterRawData(dataSet, colIndex, value, tag):
""" 用於把每個特徵的連續值按照區分點分成兩類,加入tag參數,可用於標記篩選的是哪一部分數據"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)

def dataDiscretization(dataSet, featName):
""" 對數據每個特徵的數值型特徵值進行離散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #對於每一個特徵
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相鄰兩個值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #對於每個劃分點
subEntropy = 0.0 #計算該劃分點的信息熵
for tag in range(2): #分別劃分為兩類
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)

## 計算信息增益
infoGain = entropy - subEntropy
## 選擇最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新對數據進行離散化,並重復該步驟1000次,同時用sklearn中的DecisionTreeClassifier對相同數據進行分類,分別統計平均准確率。運行代碼如下:

from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #對該過程進行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #區分測試集和訓練集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根據信息增益離散化
for i in range(testData.shape[1]-1): #根據測試集的區分點離散化訓練集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
兩者准確率分別為:
score: 0.7037894736842105
score-sk: 0.7044736842105263

准確率分布如下:

兩者的結果非常一樣。
(但是。。為什麼根據信息熵離散化得到的准確率比直接用均值離散化的准確率還要低啊??哇的哭出聲。。)

最後一次決策樹圖形如下:

決策樹剪枝
由於決策樹是完全依照訓練集生成的,有可能會有過擬合現象,因此一般會對生成的決策樹進行剪枝。常用的是通過決策樹損失函數剪枝,決策樹損失函數表示為:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a

(T)=
t=1

T

N
t

H
t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H
t

(T)表示葉子節點t的熵值,T表示決策樹的深度。前項∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T

N
t

H
t

(T)是決策樹的經驗損失函數當隨著T的增加,該節點被不停的劃分的時候,熵值可以達到最小,然而T的增加會使後項的值增大。決策樹損失函數要做的就是在兩者之間進行平衡,使得該值最小。
對於決策樹損失函數的理解,如何理解決策樹的損失函數? - 陶輕松的回答 - 知乎這個回答寫得挺好,可以按照答主的思路理解一下

C4.5演算法
ID3演算法通過信息增益來進行特徵選擇會有一個比較明顯的缺點:即在選擇的過程中該演算法會優先選擇類別較多的屬性(這些屬性的不確定性小,條件熵小,因此信息增益會大),另外,ID3演算法無法解決當每個特徵屬性中每個分類都只有一個樣本的情況(此時每個屬性的條件熵都為0)。
C4.5演算法ID3演算法的改進,它不是依據信息增益進行特徵選擇,而是依據信息增益率,它添加了特徵分裂信息作為懲罰項。定義分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i

n

∣X∣
∣X
i



log
∣X∣
∣X
i



則信息增益率為:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)

關於ID3和C4.5演算法
在學習分類回歸決策樹演算法時,看了不少的資料和博客。關於這兩個演算法,ID3演算法是最早的分類演算法,這個演算法剛出生的時候其實帶有很多缺陷:

無法處理連續性特徵數據
特徵選取會傾向於分類較多的特徵
沒有解決過擬合的問題
沒有解決缺失值的問題
即該演算法出生時是沒有帶有連續特徵離散化、剪枝等步驟的。C4.5作為ID3的改進版本彌補列ID3演算法不少的缺陷:

通過信息最大增益的標准離散化連續的特徵數據
在選擇特徵是標准從「最大信息增益」改為「最大信息增益率」
通過加入正則項系數對決策樹進行剪枝
對缺失值的處理體現在兩個方面:特徵選擇和生成決策樹。初始條件下對每個樣本的權重置為1。
特徵選擇:在選取最優特徵時,計算出每個特徵的信息增益後,需要乘以一個**「非缺失值樣本權重占總樣本權重的比例」**作為系數來對比每個特徵信息增益的大小
生成決策樹:在生成決策樹時,對於缺失的樣本我們按照一定比例把它歸屬到每個特徵值中,比例為該特徵每一個特徵值占非缺失數據的比重
關於C4.5和CART回歸樹
作為ID3的改進版本,C4.5克服了許多缺陷,但是它自身還是存在不少問題:

C4.5的熵運算中涉及了對數運算,在數據量大的時候效率非常低。
C4.5的剪枝過於簡單
C4.5隻能用於分類運算不能用於回歸
當特徵有多個特徵值是C4.5生成多叉樹會使樹的深度加深
————————————————
版權聲明:本文為CSDN博主「Sarah Huang」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/weixin_44794704/article/details/89406612

『叄』 用python學數據分析難嗎

數據分析方向的薪資待遇還是比較高的,而且上升趨勢也比較明顯。隨著大數據的落地應用,數據分析將有廣泛的發展前景,未來廣大的傳統行業也將陸續釋放出大量的數據分析崗位
通過Python來進行數據分析通常需要學習以下三方面知識:
第一:Python基本語法。Python語言的語法結構還是比較簡單易學的
第二:目前採用機器學習進行數據分析是比較常見的方式,通過Python來實現機器學習演算法也相對比較容易。學習機器學習的重點在演算法上,然後通過Python來完成演算法實現,這個過程需要學習一系列庫,包括Numpy、Matplotlib、Scipy、pandas等。
第三:大數據平台。大數據分析離不開大數據平台

『肆』 數據挖掘方向,Python中還需要學習哪些內容

就題論題,還包括:
1. Python 資料庫連接庫,例如MySQL 連接庫的應用,這決定你的數據從哪裡來。這裡面涉及到sql語法和資料庫基本知識,是你在學習的時候必須一起學會的。
2. Python 做基本數據計算和預處理的庫,包括numpy ,scipy,pandas 這三個用得最多。
3. 數據分析和挖掘庫,主要是sklearn,Statsmodels。前者是最廣泛的機器學習庫,後者是側重於統計分析的庫。(要知道統計分析大多時候和數據挖掘都錯不能分開使用)
4. 圖形展示庫。matpotlib,這是用的最多的了。
說完題主本身 要求,樓上幾位說的對,你還需要一些關於數據挖掘演算法的基本知識和認知,否則即使你調用相關庫得到結果,很可能你都不知道怎麼解讀,如何優化,甚至在什麼場景下還如何選擇演算法等。因此基本知識你得了解。主要包括:
1.統計學相關,看看深入淺出數據分析和漫畫統計學吧,雖然是入門的書籍,但很容易懂。
2.數據挖掘相關,看看數據挖掘導論吧,這是講演算法本身得書。
剩下的就是去實踐了。有項目就多參與下項目,看看真正的數據挖掘項目是怎麼開展的,流程怎樣等。沒有項目可以去參加一些數據挖掘或機器學習方面的大賽,也是增加經驗得好方法。

『伍』 python基礎都有哪些內容呢

階段一:Python開發基礎
Python全棧開發與人工智慧之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字元編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。
階段二:Python高級編程和資料庫開發
Python全棧開發與人工智慧之Python高級編程和資料庫開發知識學習內容包括:面向對象開發、Socket網路編程、線程、進程、隊列、IO多路模型、Mysql資料庫開發等。
階段三:前端開發
Python全棧開發與人工智慧之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquery&bootstrap開發、前端框架VUE開發等。
階段四:WEB框架開發
Python全棧開發與人工智慧之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。
階段五:爬蟲開發
Python全棧開發與人工智慧之爬蟲開發學習內容包括:爬蟲開發實戰。
階段六:全棧項目實戰
Python全棧開發與人工智慧之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關系管理系統開發、路飛學城在線教育平台開發等。
階段七:數據分析
Python全棧開發與人工智慧之數據分析學習內容包括:金融量化分析。
階段八:人工智慧
Python全棧開發與人工智慧之人工智慧學習內容包括:機器學習、圖形識別、無人機開發、無人駕駛等。
階段九:自動化運維&開發
Python全棧開發與人工智慧之自動化運維&開發學習內容包括:CMDB資產管理系統開發、IT審計+主機管理系統開發、分布式主機監控系統開發等。
階段十:高並發語言GO開發
Python全棧開發與人工智慧之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。
這是我校課程大綱,不妨試試!

閱讀全文

與通過python學習演算法相關的資料

熱點內容
安卓手機如何打開sbn文件 瀏覽:117
cf四川伺服器雲主機 瀏覽:248
淘寶漏洞劵哪裡app可以看 瀏覽:836
c語言找圖源碼 瀏覽:620
cb400指標源碼 瀏覽:459
漫播app下載的音頻在手機哪裡 瀏覽:24
52單片機多人跑步秒錶設計 瀏覽:114
安卓機如何給蘋果機發送圖片 瀏覽:94
解壓縮全能王的根目錄怎麼重命名 瀏覽:832
域控制器可以是雲伺服器嗎 瀏覽:474
拍過大尺度的韓國男星:藝術與商業的平衡 瀏覽:587
日本最血腥電影:探索血腥與文化的交織 瀏覽:32
馬祖電院vip免費:馬祖電院VIP會員免費福利詳解 瀏覽:201
變形金剛6免費完整版:觀影、下載及影評 瀏覽:359
超人重生電影:一個全新的英雄之旅 瀏覽:308
氣氛好的純欲片:創造引人入勝的觀影體驗 瀏覽:830