導航:首頁 > 編程語言 > python語言處理excel數據分組

python語言處理excel數據分組

發布時間:2024-06-10 21:30:34

❶ 如何用python對一個EXCEL文件中的數據進行分揀

import pandas as pd

df=pd.read_excel('d:/數據分揀.xlsx')

df1=df.整數[df.整數 % 2!=0]

df2=df.整數[df.整數 % 2==0]

ddf=pd.DataFrame([df.整數.values,df1.values,df2.values],index=['整數','奇數','偶數']).T

ddf.to_excel('d:/分揀.xlsx',index=None)

❷ python如何對excel數據進行處理

在python語言中,可以使用xlrd和xlwt兩個庫操作excel。
在python語言中處理Excel的方法:
在python項目中,新建python文件,並依次導入xlrd和xlwt。
接著調用open_workbook()方法,打開一個excel文件
調用sheet_by_name()方法,讀取文件的sheet頁
如果是後面加了個s,sheet_names表示獲取excel中所有的sheet頁
利用sheets()方法加序號,可以獲取某個sheet頁對象
如果想要獲取excel某個sheet頁中記錄的總數,使用nrows
在cell()中傳入兩個值,一個行一個列,然後value獲取對應單元格的值
推薦:python視頻教程以上就是小編分享的關於python如何對excel數據進行處理的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

❸ Python其實很簡單 第二十一章 DataFrame數據處理

將Excel中的的數據讀入數據框架DataFrame後,可以非常方便的進行各種數據處理。

21.1 列間求和

求總分(總分=語文+數學+英語)

對於上一章所提到的學生成績表,僅用一個語句即可完成總分計算,並填充。

df['總分']=df['語文']+df['數學']+df['英語']

完整代碼如下:

from pandas import read_excel

file='d:/student.xlsx' #見第18章表18-1

df=read_excel(file,sheet_name=0,converters={'學號':str})

df['總分']=df['語文']+df['數學']+df['英語']

print(df.head()) #df.head()的作用是僅顯示5行記錄。

運行結果如下:

序號 學號 姓名 年級 班級 語文 數學 英語 總分 名次

0 1 070101 王博宇 NaN NaN 84 71 93 248 NaN

1 2 070102 陳冠濤 NaN NaN 89 89 89 267 NaN

2 3 070103 李文博 NaN NaN 89 72 76 237 NaN

3 4 070204 姜海燕 NaN NaN 89 89 89 267 NaN

4 5 070205 林若溪 NaN NaN 91 95 83 269 NaN

21.2替換

既可以將對滿足條件的行和列的數據替換,也可以對整個集合的數據按照條件進行替換。

df['總分'].replace(310,'x',inplace=True)

將總分列的數值「310」替換為「x」。inplace=True表示改變原數據。

df.replace(76,0,inplace=True)

將整個DataFrame中的數值「76」替換為「0」。

df.replace([98,76,99],0,inplace=True)

將整個DataFrame中的數值「98,76,99」一次替換為「0」。

21.2排序

既可以將某一列作為關鍵欄位排序,也可以將幾個列分別作為主、次關鍵欄位進行排序。排序既可以按升序排序,也可以按降序排序。

函數sort_values()的語法格式如下:

df.sort_values(by=[「col1」,」col2」,......,」coln」],ascending=False)

其中,coln表示列名,也可以是列名的列表;ascending表示排序方式,值為True表示升序,可以省缺,值為False表示降序。

如:

df=df.sort_values(by=['總分'],ascending=False)

表示按照「總分」從高到低排序。

df=df.sort_values(by=['總分','語文'],ascending=False)

表示按照「總分」從高到低排序,若「總分」相同,再按照「語文」成績從高到低排序。

21.3 欄位截取

函數slice()可以從某列中截取字元串。格式如下:

slice(start,stop)

其中,start表示開始位置;stop表示結束位置

例:

df['年級']=df['學號'].str.slice(0,2)

通過此語句可以截取學號欄位的第1、2個字元,並賦值給年級欄位。

21.4 記錄抽取

可以抽取滿足條件的記錄。

例:抽取總分>300的記錄。

df[df.總分>300]

抽取總分在300到310之間(包括300和310)的記錄。

df[df.總分.between(306,310)]

抽取學號中包含「0803」的記錄。這樣可以非常方便的抽取某個班的信息。

df[df.學號.str.contains(񟚓',na=False)]

此處的na=False,含義是如遇到NaN這樣的數據,直接做不匹配處理。

21.5修改記錄

1、整列替換

我們在前面已經給整列填充過數據,填充時原來的數據就被覆蓋了。

即如下語句:

df['總分']=df['語文']+df['數學']+df['英語']

2、個別修改

如將值『99』替換為值『100』,可用如下語句:

df.replace(ྟ',颼')

將指定列的值替,如將語文列和英語列的值『99』替換為值『100』,可用如下語句:

df.replace({'語文':99,'英語':99},100)

可用如下程序去驗證:

from pandas import read_excel

file='d:/student.xlsx'

df=read_excel(file,sheet_name=0,converters={'學號':str})

print(df[(df.語文==99) |(df.英語==99)])

df=df.replace({'語文':99,'英語':99},100)

print(df[(df.語文==99) |(df.英語==99)])

運行結果為:

序號 學號 姓名 年級 班級 語文 數學 英語 總分 名次

28 29 090802 丁能通 09 NaN 119 120 99 338 NaN

29 30 090203 沈丹妮 09 NaN 109 108 99 316 NaN

Empty DataFrame

Columns: [序號, 學號, 姓名, 年級, 班級, 語文, 數學, 英語, 總分, 名次]

Index: []

可以看出,第一個print()語句輸出的結果中滿足條件「語文或英語為99分」的有兩條記錄,替換語句執行以後,df中再沒有滿足條件「語文或英語為99分」的記錄了。

21.6記錄合並

函數concat()的格式如下:

concat([dataFrame1,dataFrame2,......],ignore_index=True)

其中,dataFrame1等表示要合並的DataFrame數據集合;ignore_index=True表示合並之後的重新建立索引。其返回值也是DataFrame類型。

concat()函數和append()函數的功能非常相似。

例:

import pandas #導入pandas模塊

from pandas import read_excel #導入read_execel

file='d:/student.xlsx' #變數file表示文件路徑,注意'/'的用法 數據見第18章表18-1

df=read_excel(file,sheet_name=0,converters={'學號':str})

# 將Excel文件導入到DataFrame變數中

df=df[:5] #截取df的前5個記錄

print(df) #輸出df

df1=df[:3] #截取df的前3個記錄存入df1中

df2=df[3:5] #截取df的最後2個記錄存入df2中

df3=pandas.concat([df2,df1]) #將df2與df1合並存入df3中

print(df3) #輸出df3

運行結果如下:

序號 學號 姓名 年級 班級 語文 數學 英語 總分 名次

0 1 070101 王博宇 NaN NaN 84 71 93 NaN NaN

1 2 070102 陳冠濤 NaN NaN 89 89 89 NaN NaN

2 3 070103 李文博 NaN NaN 89 72 76 NaN NaN

3 4 070204 姜海燕 NaN NaN 89 89 89 NaN NaN

4 5 070205 林若溪 NaN NaN 91 95 83 NaN NaN

序號 學號 姓名 年級 班級 語文 數學 英語 總分 名次

3 4 070204 姜海燕 NaN NaN 89 89 89 NaN NaN

4 5 070205 林若溪 NaN NaN 91 95 83 NaN NaN

0 1 070101 王博宇 NaN NaN 84 71 93 NaN NaN

1 2 070102 陳冠濤 NaN NaN 89 89 89 NaN NaN

2 3 070103 李文博 NaN NaN 89 72 76 NaN NaN

由於合並時是將df1合並到df2中,可以看出,索引仍然保持原來的狀態。

21.7統計次數

可以用如下方法統計出某個值在某行或者某個范圍出現的次數。

from pandas import read_excel

file='d:/student.xlsx'

df=read_excel(file,sheet_name=0,converters={'學號':str})

df=df[:5]

print(df)

print(df['語文'].value_counts())

輸出結果如下:

序號 學號 姓名 年級 班級 語文 數學 英語 總分 名次

0 1 070101 王博宇 NaN NaN 84 71 93 NaN NaN

1 2 070102 陳冠濤 NaN NaN 89 89 89 NaN NaN

2 3 070103 李文博 NaN NaN 89 72 76 NaN NaN

3 4 070204 姜海燕 NaN NaN 89 89 89 NaN NaN

4 5 070205 林若溪 NaN NaN 91 95 83 NaN NaN

89 3

84 1

91 1

Name: 語文, dtype: int64

可以看出,通過value_counts()函數可以統計出列中各值出現的次數。

value_counts()函數的參數還有 :

ascending,當ascending=True時升序排列,當ascending=False時升序排列(此時該參數可省缺);

normalize,當normalize=True時,顯示的不再是各值出現的次數,而是佔比。

將上例中的語句print(df['語文'].value_counts())改為:

print(df['語文'].value_counts(ascending=True,normalize=True))

則輸出結果變成了:

91 0.2

84 0.2

89 0.6

Name: 語文, dtype: float64

21.8按值查找

print(df['語文'].isin([84,91]))

它的作用是查找『語文』列中值和isin所指的列表中元素一致的記錄,如果找到結果為True,否則為False。

輸出結果:

0 True

1 False

2 False

3 False

4 True

Name: 語文, dtype: bool

21.9數據分區

根據某個分區標准,將數據按照所屬區域進行劃分,並用相應的標簽表示,可以用cut()方法來實現。

語法格式如下:

cut(series, bins, right=True, labels=NULL)

其中:

series表示需要分組的數據;

bins表示分組的依據,是一個列表,其元素為劃分分區的邊界值,如[0,72,96,120],就是劃分3個分區,即0~72、72~96、96~120,默認的是「左包右不包」;

right表示分組時右邊是否閉合;

labels表示分組的自定義標簽,也可以不重新定義。

下面對上述學生成績表中的語文成績進行分組,並增加一個新的列「語文等級」。

import pandas as pd

from pandas import read_excel #導入read_execel

file='d:/student.xlsx'

df=read_excel(file,sheet_name=0,converters={'學號':str})

df['年級']=df['學號'].str.slice(0,2)

df['班級']=df['學號'].str.slice(0,4)

df.總分=df.語文+df.數學+df.英語

bins=[0,72,96,max(df.語文)+1] #

lab=['不及格','及格','優秀']

grade=pd.cut(df.語文,bins,right=False,labels=lab)

df['語文等級']=grade

print(df.head())

print("語文成績分等級統計結果:")

print(df['語文等級'].value_counts())


運行結果如下:

序號 學號 姓名 年級 班級 語文 數學 英語 總分 語文等級

0 1 070101 王博宇 07 0701 84 71 93 248 及格

1 2 070102 陳冠濤 07 0701 89 89 89 267 及格

2 3 070103 李文博 07 0701 89 72 76 237 及格

3 4 070204 姜海燕 07 0702 89 89 89 267 及格

4 5 070205 林若溪 07 0702 91 95 83 269 及格

語文成績分等級統計結果:

及格 17

優秀 10

不及格 4

Name: 語文等級, dtype: int64

閱讀全文

與python語言處理excel數據分組相關的資料

熱點內容
韓國張美仁愛三部曲 瀏覽:540
安卓版手機怎麼拍照 瀏覽:950
如何解鎖文件夾鎖 瀏覽:720
免費在線觀看的網路電視劇 瀏覽:591
svn命令查看地址 瀏覽:896
丁度巴拉度所有作品 瀏覽:103
手機在線免費觀看推理片 瀏覽:150
黑科技app免費看視頻 瀏覽:265
數控里編譯程序公式 瀏覽:635
安卓系統趣步糖果怎麼賣 瀏覽:850
捷徑怎麼打開app內部 瀏覽:363
轉pdf出錯 瀏覽:81
vip影院電視劇免費觀看 瀏覽:840
伺服器如何更改只讀文件 瀏覽:870
聖安地列斯文件夾圖片 瀏覽:890
韓國在線觀看 瀏覽:904
為啥解壓不了winrar 瀏覽:703
android線程通訊 瀏覽:613
vf退出的命令 瀏覽:611
一年級折文件夾 瀏覽:180