導航:首頁 > 編程語言 > python如何劃分數據集

python如何劃分數據集

發布時間:2022-04-22 06:55:26

python對數據進行聚類怎麼顯示數據分類

將其整理成數據集為:
[ [1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"] ]
演算法過程:

1、計算原始的信息熵。
2、依次計算數據集中每個樣本的每個特徵的信息熵。
3、比較不同特徵信息熵的大小,選出信息熵最大的特徵值並輸出。
運行結果:
col : 0 curInfoGain : 2.37744375108 baseInfoGain : 0.0
col : 1 curInfoGain : 1.37744375108 baseInfoGain : 2.37744375108
bestInfoGain : 2.37744375108 bestFeature: 0
結果分析:
說明按照第一列,即有無喉結這個特徵來進行分類的效果更好。
思考:
1、能否利用決策樹演算法,將樣本最終的分類結果進行輸出?如樣本1,2,3屬於男性,4屬於女性。

2、示常式序生成的決策樹只有一層,當特徵量增多的時候,如何生成具有多層結構的決策樹?
3、如何評判分類結果的好壞?
在下一篇文章中,我將主要對以上三個問題進行分析和解答。如果您也感興趣,歡迎您訂閱我的文章,也可以在下方進行評論,如果有疑問或認為不對的地方,您也可以留言,我將積極與您進行解答。
完整代碼如下:
from math import log
"""
計算信息熵
"""
def calcEntropy(dataset):
diclabel = {} ## 標簽字典,用於記錄每個分類標簽出現的次數
for record in dataset:
label = record[-1]
if label not in diclabel.keys():
diclabel[label] = 0
diclabel[label] += 1
### 計算熵
entropy = 0.0
cnt = len(dataset)
for label in diclabel.keys():
prob = float(1.0 * diclabel[label]/cnt)
entropy -= prob * log(prob,2)
return entropy
def initDataSet():
dataset = [[1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"]]
label = ["male","female"]
return dataset,label
#### 拆分dataset ,根據指定的過濾選項值,去掉指定的列形成一個新的數據集
def splitDataset(dataset , col, value):
retset = [] ## 拆分後的數據集
for record in dataset:
if record[col] == value :
recedFeatVec = record[:col]
recedFeatVec.extend(record[col+1:]) ### 將指定的列剔除
retset.append(recedFeatVec) ### 將新形成的特徵值列表追加到返回的列表中
return retset
### 找出信息熵增益最大的特徵值
### 參數:
### dataset : 原始的數據集
def findBestFeature(dataset):
numFeatures = len(dataset[0]) - 1 ### 特徵值的個數
baseEntropy = calcEntropy(dataset) ### 計算原始數據集的熵
baseInfoGain = 0.0 ### 初始信息增益
bestFeature = -1 ### 初始的最優分類特徵值索引
### 計算每個特徵值的熵
for col in range(numFeatures):
features = [record[col] for record in dataset] ### 提取每一列的特徵向量 如此處col= 0 ,則features = [1,1,0,0]
uniqueFeat = set(features)
curInfoGain = 0 ### 根據每一列進行拆分,所獲得的信息增益
for featVal in uniqueFeat:
subDataset = splitDataset(dataset,col,featVal) ### 根據col列的featVal特徵值來對數據集進行劃分
prob = 1.0 * len(subDataset)/numFeatures ### 計運算元特徵數據集所佔比例
curInfoGain += prob * calcEntropy(subDataset) ### 計算col列的特徵值featVal所產生的信息增益
# print "col : " ,col , " featVal : " , featVal , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
print "col : " ,col , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
if curInfoGain > baseInfoGain:
baseInfoGain = curInfoGain
bestFeature = col
return baseInfoGain,bestFeature ### 輸出最大的信息增益,以獲得該增益的列
dataset,label = initDataSet()
infogain , bestFeature = findBestFeature(dataset)
print "bestInfoGain :" , infogain, " bestFeature:",bestFeature

② 如何用Python選擇某一特定欄位的所有數據集

摘要 代碼如下for i in range(len(df)):

③ python中,如何將骨架序列數據集隨機分成不同的大小

類似這樣,X是屬性,Y是LABEL,test_size是測試集的佔比:
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=47)

④ 用python實現紅酒數據集的ID3,C4.5和CART演算法

ID3演算法介紹
ID3演算法全稱為迭代二叉樹3代演算法(Iterative Dichotomiser 3)
該演算法要先進行特徵選擇,再生成決策樹,其中特徵選擇是基於「信息增益」最大的原則進行的。
但由於決策樹完全基於訓練集生成的,有可能對訓練集過於「依賴」,即產生過擬合現象。因此在生成決策樹後,需要對決策樹進行剪枝。剪枝有兩種形式,分別為前剪枝(Pre-Pruning)和後剪枝(Post-Pruning),一般採用後剪枝。
信息熵、條件熵和信息增益
信息熵:來自於香農定理,表示信息集合所含信息的平均不確定性。信息熵越大,表示不確定性越大,所含的信息量也就越大。
設x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1

,x
2

,x
3

,...x
n

為信息集合X的n個取值,則x i x_ix
i

的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i

,i=1,2,3,...,n

信息集合X的信息熵為:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1

n

p
i

logp
i

條件熵:指已知某個隨機變數的情況下,信息集合的信息熵。
設信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1

,y
2

,y
3

,...y
m

組成的隨機變數集合Y,則隨機變數(X,Y)的聯合概率分布為
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij

條件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1

m

p(y
j

)H(X∣y
j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j

)=−
j=1

m

p(y
j

)
i=1

n

p(x
i

∣y
j

)logp(x
i

∣y
j

)
和貝葉斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i

y
j

)=p(x
i

∣y
j

)p(y
j

)
可以化簡條件熵的計算公式為:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1

m

i=1

n

p(x
i

,y
j

)log
p(x
i

,y
j

)
p(x
i

)

信息增益:信息熵-條件熵,用於衡量在知道已知隨機變數後,信息不確定性減小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)

python代碼實現
import numpy as np
import math

def calShannonEnt(dataSet):
""" 計算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy

def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特徵列label等於value,並且過濾掉改特徵列的數據集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)

def chooseFeature(dataSet):
""" 通過計算信息增益選擇最合適的特徵"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0

for v in uniqueValues: #計算條件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #計算信息增益

if infoGain >= bestInfoGain: #選擇最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):
""" 通過訓練集生成決策樹 """
featureName = featNames[:] # 拷貝featNames,此處不能直接用賦值操作,否則新變數會指向舊變數的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一個類別
return classList[0]
if dataSet.shape[1] == 1: #當所有特徵屬性都利用完仍然無法判斷樣本屬於哪一類,此時歸為該數據集中數量最多的那一類
return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #選擇特徵
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已選特徵列
decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已選特徵列所包含的類別, 通過遞歸生成決策樹
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree

def classify(decisionTree, featnames, featList):
""" 使用訓練所得的決策樹進行分類 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子節點仍是樹,則遞歸查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鳶尾花數據集對該演算法進行測試。由於ID3演算法只能用於標稱型數據,因此用在對連續型的數值數據上時,還需要對數據進行離散化,離散化的方法稍後說明,此處為了簡化,先使用每一種特徵所有連續性數值的中值作為分界點,小於中值的標記為1,大於中值的標記為0。訓練1000次,統計准確率均值。

from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]

scoreL = []
for i in range(1000): #對該過程進行10000次
trainData, testData = train_test_split(data) #區分測試集和訓練集

featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #對訓練集每個特徵,以中值為分界點進行離散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
輸出結果為:score: 0.7335,即准確率有73%。每次訓練和預測的准確率分布如下:

數據離散化
然而,在上例中對特徵值離散化的劃分點實際上過於「野蠻」,此處介紹一種通過信息增益最大的標准來對數據進行離散化。原理很簡單,當信息增益最大時,說明用該點劃分能最大程度降低數據集的不確定性。
具體步驟如下:

對每個特徵所包含的數值型特徵值排序
對相鄰兩個特徵值取均值,這些均值就是待選的劃分點
用每一個待選點把該特徵的特徵值劃分成兩類,小於該特徵點置為1, 大於該特徵點置為0,計算此時的條件熵,並計算出信息增益
選擇信息使信息增益最大的劃分點進行特徵離散化
實現代碼如下:

def filterRawData(dataSet, colIndex, value, tag):
""" 用於把每個特徵的連續值按照區分點分成兩類,加入tag參數,可用於標記篩選的是哪一部分數據"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)

def dataDiscretization(dataSet, featName):
""" 對數據每個特徵的數值型特徵值進行離散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #對於每一個特徵
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相鄰兩個值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #對於每個劃分點
subEntropy = 0.0 #計算該劃分點的信息熵
for tag in range(2): #分別劃分為兩類
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)

## 計算信息增益
infoGain = entropy - subEntropy
## 選擇最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新對數據進行離散化,並重復該步驟1000次,同時用sklearn中的DecisionTreeClassifier對相同數據進行分類,分別統計平均准確率。運行代碼如下:

from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #對該過程進行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #區分測試集和訓練集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根據信息增益離散化
for i in range(testData.shape[1]-1): #根據測試集的區分點離散化訓練集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
兩者准確率分別為:
score: 0.7037894736842105
score-sk: 0.7044736842105263

准確率分布如下:

兩者的結果非常一樣。
(但是。。為什麼根據信息熵離散化得到的准確率比直接用均值離散化的准確率還要低啊??哇的哭出聲。。)

最後一次決策樹圖形如下:

決策樹剪枝
由於決策樹是完全依照訓練集生成的,有可能會有過擬合現象,因此一般會對生成的決策樹進行剪枝。常用的是通過決策樹損失函數剪枝,決策樹損失函數表示為:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a

(T)=
t=1

T

N
t

H
t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H
t

(T)表示葉子節點t的熵值,T表示決策樹的深度。前項∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T

N
t

H
t

(T)是決策樹的經驗損失函數當隨著T的增加,該節點被不停的劃分的時候,熵值可以達到最小,然而T的增加會使後項的值增大。決策樹損失函數要做的就是在兩者之間進行平衡,使得該值最小。
對於決策樹損失函數的理解,如何理解決策樹的損失函數? - 陶輕松的回答 - 知乎這個回答寫得挺好,可以按照答主的思路理解一下

C4.5演算法
ID3演算法通過信息增益來進行特徵選擇會有一個比較明顯的缺點:即在選擇的過程中該演算法會優先選擇類別較多的屬性(這些屬性的不確定性小,條件熵小,因此信息增益會大),另外,ID3演算法無法解決當每個特徵屬性中每個分類都只有一個樣本的情況(此時每個屬性的條件熵都為0)。
C4.5演算法ID3演算法的改進,它不是依據信息增益進行特徵選擇,而是依據信息增益率,它添加了特徵分裂信息作為懲罰項。定義分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i

n

∣X∣
∣X
i



log
∣X∣
∣X
i



則信息增益率為:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)

關於ID3和C4.5演算法
在學習分類回歸決策樹演算法時,看了不少的資料和博客。關於這兩個演算法,ID3演算法是最早的分類演算法,這個演算法剛出生的時候其實帶有很多缺陷:

無法處理連續性特徵數據
特徵選取會傾向於分類較多的特徵
沒有解決過擬合的問題
沒有解決缺失值的問題
即該演算法出生時是沒有帶有連續特徵離散化、剪枝等步驟的。C4.5作為ID3的改進版本彌補列ID3演算法不少的缺陷:

通過信息最大增益的標准離散化連續的特徵數據
在選擇特徵是標准從「最大信息增益」改為「最大信息增益率」
通過加入正則項系數對決策樹進行剪枝
對缺失值的處理體現在兩個方面:特徵選擇和生成決策樹。初始條件下對每個樣本的權重置為1。
特徵選擇:在選取最優特徵時,計算出每個特徵的信息增益後,需要乘以一個**「非缺失值樣本權重占總樣本權重的比例」**作為系數來對比每個特徵信息增益的大小
生成決策樹:在生成決策樹時,對於缺失的樣本我們按照一定比例把它歸屬到每個特徵值中,比例為該特徵每一個特徵值占非缺失數據的比重
關於C4.5和CART回歸樹
作為ID3的改進版本,C4.5克服了許多缺陷,但是它自身還是存在不少問題:

C4.5的熵運算中涉及了對數運算,在數據量大的時候效率非常低。
C4.5的剪枝過於簡單
C4.5隻能用於分類運算不能用於回歸
當特徵有多個特徵值是C4.5生成多叉樹會使樹的深度加深
————————————————
版權聲明:本文為CSDN博主「Sarah Huang」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/weixin_44794704/article/details/89406612

⑤ 在Python中如何差分時間序列數據集

差分是一種變換時間序列數據集的方法。
它可以用於消除序列對時間性的依賴性,即所謂的時間性依賴。這包含趨勢和周期性的結構。
不同的方法可以幫助穩定時間序列的均值,消除時間序列的變化,從而消除(或減少)趨勢和周期性。

⑥ python數據集中有中文怎麼做分類

可以通過pip包管理器來安裝Python包,但是pygame包包含C語言代碼,需要進行編譯。最簡單的方式是,在網上下載已經編譯好的安裝包。具體步驟如下: 到下載pygame的安裝包,注意選擇合適的版本,比如適合Python3.4的版本文件名中包含cp34,

⑦ 如何利用python將txt文件劃分訓練集和測試集

通常使用的劃分方法是留出法,即隨機選擇2/3的數據作為訓練數據,剩餘1/3的數據作為測試數據,但要保證訓練集和測試集中數據分布大致相同,以二分類問題為例,兩個數據集中正例和反例的比例不能相差過大,都以50%為佳。也有其他方法如交叉驗證法、自助法等,它們在訓練時間、訓練效果、內存佔有量等方面各有優劣,具體請看周志華的機器學習(西瓜書)第二章。

⑧ python數據分析的基本步驟

一、環境搭建

數據分析最常見的環境是Anaconda+Jupyter notebook

二、導入包

2.1數據處理包導入

2.2畫圖包導入

2.3日期處理包導入

2.4jupyter notebook繪圖設置

三、讀取數據

四、數據預覽

1.數據集大小

2.查看隨便幾行或前幾行或後幾行

3.查看數據類型

4.查看數據的數量、無重復值、平均值、最小值、最大值等

5.查看欄位名、類型、空值數為多少

五、數據處理

  1. 把需要的欄位挑選出來。

  2. 數據類型轉換

  3. 日期段數據處理。

⑨ 怎樣把用python代碼把ml-latest-small數據集分為訓練集和測試集

一般來講,做cross validation的時候,大家會把k設為5或者10。也就是說,將數據(隨機)分為k份,其中k-1份為訓練,1份做測試。
不過話說回來,都要做cross validation了,應該是快不了的。

⑩ Python如何將數據集均分成10份

每次測試之前,先把所有測試數據的順序打亂。可以通過一個循環,然後每次隨機調換兩個數據的位置來實現。

閱讀全文

與python如何劃分數據集相關的資料

熱點內容
linux打包命令targz 瀏覽:996
抖音app是哪個 瀏覽:407
蘋果app怎麼上架 瀏覽:255
NA伺服器地址 瀏覽:427
我的世界如何初始化伺服器 瀏覽:97
哪個手機app天氣預報最准 瀏覽:752
怎樣把視頻壓縮至25m 瀏覽:570
vivox27文件夾怎麼改變 瀏覽:727
新手玩狼人殺用什麼app 瀏覽:615
pdf在線查看 瀏覽:954
安卓tv90如何關閉後台 瀏覽:683
php讀取word亂碼 瀏覽:755
minicom源碼 瀏覽:1001
海爾冷櫃壓縮機 瀏覽:416
聯通伺服器如何調試信號 瀏覽:136
stata新命令 瀏覽:941
單調棧演算法python 瀏覽:606
微信解壓游戲怎麼下載 瀏覽:962
忍三伺服器不同如何登上賬號 瀏覽:822
php求積 瀏覽:297