① linux系統怎樣執行進程調度
簡單的說,就是執行schele()函數,具體的就復雜了,牽涉到演算法(選擇下一個執行進程)、進程切換等,要鑽研一下才能懂,建議看下《深入理解LINUX內核》
② Linux如何進行進程調度引入線程機制後,進程管理內容包括哪些
進程調度的演算法有很多,簡單來說就是每個進程都有一個自己的時間片,時間到了,就會被掛起,然後系統挑選下一個合適的進程來執行。至於誰合適,那就要看演算法了,優先順序,是不是飢餓,I/O型還是運算型,都要考慮的。
調度演算法比較復雜龐大,不是這里說的清楚的。
進程切換的過程大概就是保存當前上下文,也就是各種寄存器的狀態,包括指令寄存器。然後把下一個進程的上下文載入上來。
有了線程機制之後,進程管理主要管理線程之間的數據共享,管理進程地址空間,進程的交換空間。因為這些資源是屬於進程的,線程之間是共享的。
現代操作系統調度基本是圍繞線程進行的,進程更多的是起到資源管理分配的作用。
③ linux 進程調度器 怎樣運行
簡單的說
,就是執行schele()函數,具體的就復雜了,牽涉到演算法(
選擇下
一個執行進程)、
進程切換
等,要鑽研一下才能懂,建議看下《
深入理解LINUX內核
》
④ linux操作系統進程調度
Linux進程調度採用的是搶占式多任務處理,所以進程之間的掛起和繼續運行無需彼此之間的協作。
⑤ 進程調度的Linux 原理
1,SCHED_OTHER 分時調度策略,
2,SCHED_FIFO實時調度策略,先到先服務
3,SCHED_RR實時調度策略,時間片輪轉
實時進程將得到優先調用,實時進程根據實時優先順序決定調度權值,分時進程則通過nice和counter值決定權值,nice越小,counter越大,被調度的概率越大,也就是曾經使用了cpu最少的進程將會得到優先調度。
SHCED_RR和SCHED_FIFO的不同:
當採用SHCED_RR策略的進程的時間片用完,系統將重新分配時間片,並置於就緒隊列尾。放在隊列尾保證了所有具有相同優先順序的RR任務的調度公平。
SCHED_FIFO一旦佔用cpu則一直運行。一直運行直到有更高優先順序任務到達或自己放棄。
如果有相同優先順序的實時進程(根據優先順序計算的調度權值是一樣的)已經准備好,FIFO時必須等待該進程主動放棄後才可以運行這個優先順序相同的任務。而RR可以讓每個任務都執行一段時間。
相同點:
RR和FIFO都只用於實時任務。
創建時優先順序大於0(1-99)。
按照可搶占優先順序調度演算法進行。
就緒態的實時任務立即搶占非實時任務。
所有任務都採用linux分時調度策略時。
1,創建任務指定採用分時調度策略,並指定優先順序nice值(-20~19)。
2,將根據每個任務的nice值確定在cpu上的執行時間(counter)。
3,如果沒有等待資源,則將該任務加入到就緒隊列中。
4,調度程序遍歷就緒隊列中的任務,通過對每個任務動態優先順序的計算(counter+20-nice)結果,選擇計算結果最大的一個去運行,當這個時間片用完後(counter減至0)或者主動放棄cpu時,該任務將被放在就緒隊列末尾(時間片用完)或等待隊列(因等待資源而放棄cpu)中。
5,此時調度程序重復上面計算過程,轉到第4步。
6,當調度程序發現所有就緒任務計算所得的權值都為不大於0時,重復第2步。
所有任務都採用FIFO時,
1,創建進程時指定採用FIFO,並設置實時優先順序rt_priority(1-99)。
2,如果沒有等待資源,則將該任務加入到就緒隊列中。
3,調度程序遍歷就緒隊列,根據實時優先順序計算調度權值(1000+rt_priority),選擇權值最高的任務使用cpu,該FIFO任務將一直佔有cpu直到有優先順序更高的任務就緒(即使優先順序相同也不行)或者主動放棄(等待資源)。
4,調度程序發現有優先順序更高的任務到達(高優先順序任務可能被中斷或定時器任務喚醒,再或被當前運行的任務喚醒,等等),則調度程序立即在當前任務堆棧中保存當前cpu寄存器的所有數據,重新從高優先順序任務的堆棧中載入寄存器數據到cpu,此時高優先順序的任務開始運行。重復第3步。
5,如果當前任務因等待資源而主動放棄cpu使用權,則該任務將從就緒隊列中刪除,加入等待隊列,此時重復第3步。
所有任務都採用RR調度策略時
1,創建任務時指定調度參數為RR,並設置任務的實時優先順序和nice值(nice值將會轉換為該任務的時間片的長度)。
2,如果沒有等待資源,則將該任務加入到就緒隊列中。
3,調度程序遍歷就緒隊列,根據實時優先順序計算調度權值(1000+rt_priority),選擇權值最高的任務使用cpu。
4,如果就緒隊列中的RR任務時間片為0,則會根據nice值設置該任務的時間片,同時將該任務放入就緒隊列的末尾。重復步驟3。
5,當前任務由於等待資源而主動退出cpu,則其加入等待隊列中。重復步驟3。
系統中既有分時調度,又有時間片輪轉調度和先進先出調度
1,RR調度和FIFO調度的進程屬於實時進程,以分時調度的進程是非實時進程。
2,當實時進程准備就緒後,如果當前cpu正在運行非實時進程,則實時進程立即搶占非實時進程。
3,RR進程和FIFO進程都採用實時優先順序做為調度的權值標准,RR是FIFO的一個延伸。FIFO時,如果兩個進程的優先順序一樣,則這兩個優先順序一樣的進程具體執行哪一個是由其在隊列中的未知決定的,這樣導致一些不公正性(優先順序是一樣的,為什麼要讓你一直運行?),如果將兩個優先順序一樣的任務的調度策略都設為RR,則保證了這兩個任務可以循環執行,保證了公平。 調度程序運行時,要在所有處於可運行狀態的進程之中選擇最值得運行的進程投入運行。選擇進程的依據是什麼呢?在每個進程的task_struct 結構中有這么四項:
policy, priority , counter, rt_priority
這四項就是調度程序選擇進程的依據.其中,policy是進程的調度策略,用來區分兩種進程-實時和普通;priority是進程(實時和普通)的優先順序;counter 是進程剩餘的時間片,它的大小完全由priority決定;rt_priority是實時優先順序,這是實時進程所特有的,用於實時進程間的選擇。
首先,Linux 根據policy從整體上區分實時進程和普通進程,因為實時進程和普通進程度調度是不同的,它們兩者之間,實時進程應該先於普通進程而運行,然後,對於同一類型的不同進程,採用不同的標准來選擇進程:
對於普通進程,Linux採用動態優先調度,選擇進程的依據就是進程counter的大小。進程創建時,優先順序priority被賦一個初值,一般為0~70之間的數字,這個數字同時也是計數器counter的初值,就是說進程創建時兩者是相等的。字面上看,priority是「優先順序」、counter是「計數器」的意思,然而實際上,它們表達的是同一個意思-進程的「時間片」。Priority代表分配給該進程的時間片,counter表示該進程剩餘的時間片。在進程運行過程中,counter不斷減少,而priority保持不變,以便在counter變為0的時候(該進程用完了所分配的時間片)對counter重新賦值。當一個普通進程的時間片用完以後,並不馬上用priority對counter進行賦值,只有所有處於可運行狀態的普通進程的時間片(p->;;counter==0)都用完了以後,才用priority對counter重新賦值,這個普通進程才有了再次被調度的機會。這說明,普通進程運行過程中,counter的減小給了其它進程得以運行的機會,直至counter減為0時才完全放棄對CPU的使用,這就相對於優先順序在動態變化,所以稱之為動態優先調度。至於時間片這個概念,和其他不同操作系統一樣的,Linux的時間單位也是「時鍾滴答」,只是不同操作系統對一個時鍾滴答的定義不同而已(Linux為10ms)。進程的時間片就是指多少個時鍾滴答,比如,若priority為20,則分配給該進程的時間片就為20個時鍾滴答,也就是20*10ms=200ms。Linux中某個進程的調度策略(policy)、優先順序(priority)等可以作為參數由用戶自己決定,具有相當的靈活性。內核創建新進程時分配給進程的時間片預設為200ms(更准確的,應為210ms),用戶可以通過系統調用改變它。
對於實時進程,Linux採用了兩種調度策略,即FIFO(先來先服務調度)和RR(時間片輪轉調度)。因為實時進程具有一定程度的緊迫性,所以衡量一個實時進程是否應該運行,Linux採用了一個比較固定的標准。實時進程的counter只是用來表示該進程的剩餘時間片,並不作為衡量它是否值得運行的標准,這和普通進程是有區別的。上面已經看到,每個進程有兩個優先順序,實時優先順序就是用來衡量實時進程是否值得運行的。
這一切看來比較麻煩,但實際上Linux中的實現相當簡單。Linux用函數goodness()來衡量一個處於可運行狀態的進程值得運行的程度。該函數綜合了上面提到的各個方面,給每個處於可運行狀態的進程賦予一個權值(weight),調度程序以這個權值作為選擇進程的唯一依據。
Linux根據policy的值將進程總體上分為實時進程和普通進程,提供了三種調度演算法:一種傳統的Unix調度程序和兩個由POSIX.1b(原名為POSIX.4)操作系統標准所規定的「實時」調度程序。但這種實時只是軟實時,不滿足諸如中斷等待時間等硬實時要求,只是保證了當實時進程需要時一定只把CPU分配給實時進程。
非實時進程有兩種優先順序,一種是靜態優先順序,另一種是動態優先順序。實時進程又增加了第三種優先順序,實時優先順序。優先順序是一些簡單的整數,為了決定應該允許哪一個進程使用CPU的資源,用優先順序代表相對權值-優先順序越高,它得到CPU時間的機會也就越大。
? 靜態優先順序(priority)-不隨時間而改變,只能由用戶進行修改。它指明了在被迫和其他進程競爭CPU之前,該進程所應該被允許的時間片的最大值(但很可能的,在該時間片耗盡之前,進程就被迫交出了CPU)。
? 動態優先順序(counter)-只要進程擁有CPU,它就隨著時間不斷減小;當它小於0時,標記進程重新調度。它指明了在這個時間片中所剩餘的時間量。
? 實時優先順序(rt_priority)-指明這個進程自動把CPU交給哪一個其他進程;較高權值的進程總是優先於較低權值的進程。如果一個進程不是實時進程,其優先順序就是0,所以實時進程總是優先於非實時進程的(但實際上,實時進程也會主動放棄CPU)。
當policy分別為以下值時:
1) SCHED_OTHER:這是普通的用戶進程,進程的預設類型,採用動態優先調度策略,選擇進程的依據主要是根據進程goodness值的大小。這種進程在運行時,可以被高goodness值的進程搶先。
2) SCHED_FIFO:這是一種實時進程,遵守POSIX1.b標準的FIFO(先入先出)調度規則。它會一直運行,直到有一個進程因I/O阻塞,或者主動釋放CPU,或者是CPU被另一個具有更高rt_priority的實時進程搶先。在Linux實現中,SCHED_FIFO進程仍然擁有時間片-只有當時間片用完時它們才被迫釋放CPU。因此,如同POSIX1.b一樣,這樣的進程就象沒有時間片(不是採用分時)一樣運行。Linux中進程仍然保持對其時間片的記錄(不修改counter)主要是為了實現的方便,同時避免在調度代碼的關鍵路徑上出現條件判斷語句 if (!(current->;;policy&;;SCHED_FIFO)){...}-要知道,其他大量非FIFO進程都需要記錄時間片,這種多餘的檢測只會浪費CPU資源。(一種優化措施,不該將執行時間佔10%的代碼的運行時間減少到50%;而是將執行時間佔90%的代碼的運行時間減少到95%。0.9+0.1*0.5=0.95>;;0.1+0.9*0.9=0.91)
3) SCHED_RR:這也是一種實時進程,遵守POSIX1.b標準的RR(循環round-robin)調度規則。除了時間片有些不同外,這種策略與SCHED_FIFO類似。當SCHED_RR進程的時間片用完後,就被放到SCHED_FIFO和SCHED_RR隊列的末尾。
只要系統中有一個實時進程在運行,則任何SCHED_OTHER進程都不能在任何CPU運行。每個實時進程有一個rt_priority,因此,可以按照rt_priority在所有SCHED_RR進程之間分配CPU。其作用與SCHED_OTHER進程的priority作用一樣。只有root用戶能夠用系統調用sched_setscheler,來改變當前進程的類型(sys_nice,sys_setpriority)。
此外,內核還定義了SCHED_YIELD,這並不是一種調度策略,而是截取調度策略的一個附加位。如同前面說明的一樣,如果有其他進程需要CPU,它就提示調度程序釋放CPU。特別要注意的就是這甚至會引起實時進程把CPU釋放給非實時進程。 真正執行調度的函數是schele(void),它選擇一個最合適的進程執行,並且真正進行上下文切換,使得選中的進程得以執行。而reschele_idle(struct task_struct *p)的作用是為進程選擇一個合適的CPU來執行,如果它選中了某個CPU,則將該CPU上當前運行進程的need_resched標志置為1,然後向它發出一個重新調度的處理機間中斷,使得選中的CPU能夠在中斷處理返回時執行schele函數,真正調度進程p在CPU上執行。在schele()和reschele_idle()中調用了goodness()函數。goodness()函數用來衡量一個處於可運行狀態的進程值得運行的程度。此外,在schele()函數中還調用了schele_tail()函數;在reschele_idle()函數中還調用了reschele_idle_slow()。這些函數的實現對理解SMP的調度非常重要,下面一一分析這些函數。先給出每個函數的主要流程圖,然後給出源代碼,並加註釋。
goodness()函數分析
goodness()函數計算一個處於可運行狀態的進程值得運行的程度。一個任務的goodness是以下因素的函數:正在運行的任務、想要運行的任務、當前的CPU。goodness返回下面兩類值中的一個:1000以下或者1000以上。1000或者1000以上的值只能賦給「實時」進程,從0到999的值只能賦給普通進程。實際上,在單處理器情況下,普通進程的goodness值只使用這個范圍底部的一部分,從0到41。在SMP情況下,SMP模式會優先照顧等待同一個處理器的進程。不過,不管是UP還是SMP,實時進程的goodness值的范圍是從1001到1099。
goodness()函數其實是不會返回-1000的,也不會返回其他負值。由於idle進程的counter值為負,所以如果使用idle進程作為參數調用goodness,就會返回負值,但這是不會發生的。
goodness()是個簡單的函數,但是它是linux調度程序不可缺少的部分。運行隊列中的每個進程每次執行schele時都要調度它,因此它的執行速度必須很快。
//在/kernel/sched.c中
static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
{ int weight;
if (p->;;policy != SCHED_OTHER) {/*如果是實時進程,則*/
weight = 1000 + p->;;rt_priority;
goto out;
}
/* 將counter的值賦給weight,這就給了進程一個大概的權值,counter中的值表示進程在一個時間片內,剩下要運行的時間.*/
weight = p->;;counter;
if (!weight) /* weight==0,表示該進程的時間片已經用完,則直接轉到標號out*/
goto out;
#ifdef __SMP__
/*在SMP情況下,如果進程將要運行的CPU與進程上次運行的CPU是一樣的,則最有利,因此,假如進程上次運行的CPU與當前CPU一致的話,權值加上PROC_CHANGE_PENALTY,這個宏定義為20。*/
if (p->;;processor == this_cpu)
weight += PROC_CHANGE_PENALTY;
#endif
if (p->;;mm == this_mm) /*進程p與當前運行進程,是同一個進程的不同線程,或者是共享地址空間的不同進程,優先選擇,權值加1*/
weight += 1;
weight += p->;;priority; /* 權值加上進程的優先順序*/
out:
return weight; /* 返回值作為進程調度的唯一依據,誰的權值大,就調度誰運行*/
}
schele()函數分析
schele()函數的作用是,選擇一個合適的進程在CPU上執行,它僅僅根據'goodness'來工作。對於SMP情況,除了計算每個進程的加權平均運行時間外,其他與SMP相關的部分主要由goodness()函數來體現。
流程:
①將prev和next設置為schele最感興趣的兩個進程:其中一個是在調用schele時正在運行的進程(prev),另外一個應該是接著就給予CPU的進程(next)。注意:prev和next可能是相同的-schele可以重新調度已經獲得cpu的進程.
②中斷處理程序運行「下半部分」.
③內核實時系統部分的實現,循環調度程序(SCHED_RR)通過移動「耗盡的」RR進程-已經用完其時間片的進程-到隊列末尾,這樣具有相同優先順序的其他RR進程就可以獲得CPU了。同時,這補充了耗盡進程的時間片。
④由於代碼的其他部分已經決定了進程必須被移進或移出TASK_RUNNING狀態,所以會經常使用schele,例如,如果進程正在等待的硬體條件已經發生,所以如果必要,這個switch會改變進程的狀態。如果進程已經處於TASK_RUNNING狀態,它就無需處理了。如果它是可以中斷的(等待信號),並且信號已經到達了進程,就返回TASK_RUNNING狀態。在所以其他情況下(例如,進程已經處於TASK_UNINTERRUPTIBLE狀態了),應該從運行隊列中將進程移走。
⑤將p初始化為運行隊列的第一個任務;p會遍歷隊列中的所有任務。
⑥c記錄了運行隊列中所有進程最好的「goodness」-具有最好「goodness」的進程是最易獲得CPU的進程。goodness的值越高越好。
⑦遍歷執行任務鏈表,跟蹤具有最好goodness的進程。
⑧這個循環中只考慮了唯一一個可以調度的進程。在SMP模式下,只有任務不在cpu上運行時,即can_schele宏返回為真時,才會考慮該任務。在UP情況下,can_schele宏返回恆為真.
⑨如果循環結束後,得到c的值為0。說明運行隊列中的所有進程的goodness值都為0。goodness的值為0,意味著進程已經用完它的時間片,或者它已經明確說明要釋放CPU。在這種情況下,schele要重新計算進程的counter;新counter的值是原來值的一半加上進程的靜態優先順序(priortiy),除非進程已經釋放CPU,否則原來counter的值為0。因此,schele通常只是把counter初始化為靜態優先順序。(中斷處理程序和由另一個處理器引起的分支在schele搜尋goodness最大值時都將增加此循環中的計數器,因此由於這個原因計數器可能不會為0。顯然,這很罕見。)在counter的值計算完成後,重新開始執行這個循環,找具有最大goodness的任務。
⑩如果schele已經選擇了一個不同於前面正在執行的進程來調度,那麼就必須掛起原來的進程並允許新的進程運行。這時調用switch_to來進行切換。
⑥ Linux進程調度的思 考 題
1. 什麼是進程?進程與作業有何區別?
2. 進程啟動的方式有哪幾種?
3. at命令與batch命令有何本質區別?
4. cron命令在何時執行?如何改變其執行狀態?
5. 何謂前台作業、後台作業?如何掛起當前的前台作業?如果要恢復其運行又如何做?
6. 進程的查看命令有哪些?各有什麼不同?
7. 如何中斷一個後台進程?
8. 如何在用戶退出Linux系統時,使一個進程仍然能繼續執行?
9. 如何修改一個作業的優先權?
10. 編寫和檢驗完成下列各項功能的命令管道行:
(1)顯示當前系統中的登錄名的數目。
(2)顯示當前系統中有多少個進程。
11. 說明下列管道行分別完成什麼功能:
(1)df -a | wc -l
(2)who | wc -
⑦ linux的進程調度採用的是
Linux進程調度採用的是搶占式多任務處理,所以進程之間的掛起和繼續運行無需彼此之間的協作。
在一個如linux這樣的多任務系統中,多個程序可能會競爭使用同一個資源,在這種情況下,我們認為,執行短期的突發性工作並暫停運行以等待輸入的程序,要比持續佔用處理器以進行計算或不斷輪詢系統以查看是否有輸入到達的程序要更好。我們稱表現好的程序為nice程序,而且在某種意義上,這個nice 是可以被計算出來的。操作系統根據進程的nice值來決定它的優先順序,一個進程的nice值默認為0並將根據這個程序的表現不斷變化。長期不間斷運行的程序的優先順序一般會比較低。
⑧ Linux進程調度的控制多個進程命令
Linux可使用戶同時運行多個進程,還允許用戶或系統管理員能控制正在運行的進程。 理論上,我們一般退出Linux系統時,會把所有的程序全部結束掉,包括那些後台程序。但有時候,例如您正在編輯一個很長的程序,但是您下班或是有事需要先退出系統,這時您又不希望系統把您編輯那麼久的程序結束掉,希望退出系統時,程序還能繼續執行。這時,我們就可以使用nohup命令使進程在用戶退出後仍繼續執行。
一般這些進程我們都是讓它在後台執行,結果則會寫到用戶自己的目錄下的nohup.out這個文件里(也可以使用輸出重定向,讓它輸出到一個特定的文件)。
[例26] $ nohup sort sales.dat &
這條命令告訴sort命令忽略用戶已退出系統,它應該一直運行,直到進程完成。利用這種方法,可以啟動一個要運行幾天甚至幾周的進程,而且在它運行時,用戶不需要去登錄。
nohup命令把一條命令的所有輸出和錯誤信息送到nohup.out文件中。若將輸出重定向,則只有錯誤信息放在nohup.out文件中。 renice命令允許用戶修改一個正在運行進程的優先權。 利用renice命令可以在命令執行時調整其優先權。其格式如下:
$ renice -number PID
其中,參數number與nice命令的number意義相同。
註:
(1) 用戶只能對自己所有的進程使用renice命令。
(2) root用戶可以在任何進程上使用renice命令。
(3) 只有root用戶才能提高進程的優先權。
⑨ Linux系統內核進程調度的問題
Linux內核是通過硬體中斷來執行相應的中斷處理程序,Linux內核是利用中斷程序實現了對task任務鏈表的分析處理,這自然也包括重新分配CPU時間片Linux系統上,中斷系統是很核心的東西,她很大程度上能影響整個內核,因為任何時刻都有可能發生中斷信號,無論CPU在干什麼都一定會處理的(除非中斷還沒初始化完成或者還在屏蔽中斷)
⑩ linux環境下的進程調度演算法有哪些
第一部分: 實時調度演算法介紹
對於什麼是實時系統,POSIX 1003.b作了這樣的定義:指系統能夠在限定的響應時間內提供所需水平的服務。而一個由Donald Gillies提出的更加為大家接受的定義是:一個實時系統是指計算的正確性不僅取決於程序的邏輯正確性,也取決於結果產生的時間,如果系統的時間約束條件得不到滿足,將會發生系統出錯。
實時系統根據其對於實時性要求的不同,可以分為軟實時和硬實時兩種類型。硬實時系統指系統要有確保的最壞情況下的服務時間,即對於事件的響應時間的截止期限是無論如何都必須得到滿足。比如航天中的宇宙飛船的控制等就是現實中這樣的系統。其他的所有有實時特性的系統都可以稱之為軟實時系統。如果明確地來說,軟實時系統就是那些從統計的角度來說,一個任務(在下面的論述中,我們將對任務和進程不作區分)能夠得到有確保的處理時間,到達系統的事件也能夠在截止期限到來之前得到處理,但違反截止期限並不會帶來致命的錯誤,像實時多媒體系統就是一種軟實時系統。
一個計算機系統為了提供對於實時性的支持,它的操作系統必須對於CPU和其他資源進行有效的調度和管理。在多任務實時系統中,資源的調度和管理更加復雜。本文下面將先從分類的角度對各種實時任務調度演算法進行討論,然後研究普通的 Linux操作系統的進程調度以及各種實時Linux系統為了支持實時特性對普通Linux系統所做的改進。最後分析了將Linux操作系統應用於實時領域中時所出現的一些問題,並總結了各種實時Linux是如何解決這些問題的。
1. 實時CPU調度演算法分類
各種實時操作系統的實時調度演算法可以分為如下三種類別[Wang99][Gopalan01]:基於優先順序的調度演算法(Priority-driven scheling-PD)、基於CPU使用比例的共享式的調度演算法(Share-driven scheling-SD)、以及基於時間的進程調度演算法(Time-driven scheling-TD),下面對這三種調度演算法逐一進行介紹。
1.1. 基於優先順序的調度演算法
基於優先順序的調度演算法給每個進程分配一個優先順序,在每次進程調度時,調度器總是調度那個具有最高優先順序的任務來執行。根據不同的優先順序分配方法,基於優先順序的調度演算法可以分為如下兩種類型[Krishna01][Wang99]:
靜態優先順序調度演算法:
這種調度演算法給那些系統中得到運行的所有進程都靜態地分配一個優先順序。靜態優先順序的分配可以根據應用的屬性來進行,比如任務的周期,用戶優先順序,或者其它的預先確定的策略。RM(Rate-Monotonic)調度演算法是一種典型的靜態優先順序調度演算法,它根據任務的執行周期的長短來決定調度優先順序,那些具有小的執行周期的任務具有較高的優先順序。
動態優先順序調度演算法:
這種調度演算法根據任務的資源需求來動態地分配任務的優先順序,其目的就是在資源分配和調度時有更大的靈活性。非實時系統中就有很多這種調度演算法,比如短作業優先的調度演算法。在實時調度演算法中, EDF演算法是使用最多的一種動態優先順序調度演算法,該演算法給就緒隊列中的各個任務根據它們的截止期限(Deadline)來分配優先順序,具有最近的截止期限的任務具有最高的優先順序。
1.2. 基於比例共享調度演算法
雖然基於優先順序的調度演算法簡單而有效,但這種調度演算法提供的是一種硬實時的調度,在很多情況下並不適合使用這種調度演算法:比如象實時多媒體會議系統這樣的軟實時應用。對於這種軟實時應用,使用一種比例共享式的資源調度演算法(SD演算法)更為適合。
比例共享調度演算法指基於CPU使用比例的共享式的調度演算法,其基本思想就是按照一定的權重(比例)對一組需要調度的任務進行調度,讓它們的執行時間與它們的權重完全成正比。
我們可以通過兩種方法來實現比例共享調度演算法[Nieh01]:第一種方法是調節各個就緒進程出現在調度隊列隊首的頻率,並調度隊首的進程執行;第二種做法就是逐次調度就緒隊列中的各個進程投入運行,但根據分配的權重調節分配個每個進程的運行時間片。
比例共享調度演算法可以分為以下幾個類別:輪轉法、公平共享、公平隊列、彩票調度法(Lottery)等。
比例共享調度演算法的一個問題就是它沒有定義任何優先順序的概念;所有的任務都根據它們申請的比例共享CPU資源,當系統處於過載狀態時,所有的任務的執行都會按比例地變慢。所以為了保證系統中實時進程能夠獲得一定的CPU處理時間,一般採用一種動態調節進程權重的方法。
1.3. 基於時間的進程調度演算法
對於那些具有穩定、已知輸入的簡單系統,可以使用時間驅動(Time-driven:TD)的調度演算法,它能夠為數據處理提供很好的預測性。這種調度演算法本質上是一種設計時就確定下來的離線的靜態調度方法。在系統的設計階段,在明確系統中所有的處理情況下,對於各個任務的開始、切換、以及結束時間等就事先做出明確的安排和設計。這種調度演算法適合於那些很小的嵌入式系統、自控系統、感測器等應用環境。
這種調度演算法的優點是任務的執行有很好的可預測性,但最大的缺點是缺乏靈活性,並且會出現有任務需要被執行而CPU卻保持空閑的情況。
2. 通用Linux系統中的CPU調度
通用Linux系統支持實時和非實時兩種進程,實時進程相對於普通進程具有絕對的優先順序。對應地,實時進程採用SCHED_FIFO或者SCHED_RR調度策略,普通的進程採用SCHED_OTHER調度策略。
在調度演算法的實現上,Linux中的每個任務有四個與調度相關的參數,它們是rt_priority、policy、priority(nice)、counter。調度程序根據這四個參數進行進程調度。
在SCHED_OTHER 調度策略中,調度器總是選擇那個priority+counter值最大的進程來調度執行。從邏輯上分析,SCHED_OTHER調度策略存在著調度周期(epoch),在每一個調度周期中,一個進程的priority和counter值的大小影響了當前時刻應該調度哪一個進程來執行,其中 priority是一個固定不變的值,在進程創建時就已經確定,它代表了該進程的優先順序,也代表這該進程在每一個調度周期中能夠得到的時間片的多少; counter是一個動態變化的值,它反映了一個進程在當前的調度周期中還剩下的時間片。在每一個調度周期的開始,priority的值被賦給 counter,然後每次該進程被調度執行時,counter值都減少。當counter值為零時,該進程用完自己在本調度周期中的時間片,不再參與本調度周期的進程調度。當所有進程的時間片都用完時,一個調度周期結束,然後周而復始。另外可以看出Linux系統中的調度周期不是靜態的,它是一個動態變化的量,比如處於可運行狀態的進程的多少和它們priority值都可以影響一個epoch的長短。值得注意的一點是,在2.4以上的內核中, priority被nice所取代,但二者作用類似。
可見SCHED_OTHER調度策略本質上是一種比例共享的調度策略,它的這種設計方法能夠保證進程調度時的公平性--一個低優先順序的進程在每一個epoch中也會得到自己應得的那些CPU執行時間,另外它也提供了不同進程的優先順序區分,具有高priority值的進程能夠獲得更多的執行時間。
對於實時進程來說,它們使用的是基於實時優先順序rt_priority的優先順序調度策略,但根據不同的調度策略,同一實時優先順序的進程之間的調度方法有所不同:
SCHED_FIFO:不同的進程根據靜態優先順序進行排隊,然後在同一優先順序的隊列中,誰先准備好運行就先調度誰,並且正在運行的進程不會被終止直到以下情況發生:1.被有更高優先順序的進程所強佔CPU;2.自己因為資源請求而阻塞;3.自己主動放棄CPU(調用sched_yield);
SCHED_RR:這種調度策略跟上面的SCHED_FIFO一模一樣,除了它給每個進程分配一個時間片,時間片到了正在執行的進程就放棄執行;時間片的長度可以通過sched_rr_get_interval調用得到;
由於Linux系統本身是一個面向桌面的系統,所以將它應用於實時應用中時存在如下的一些問題:
Linux系統中的調度單位為10ms,所以它不能夠提供精確的定時;
當一個進程調用系統調用進入內核態運行時,它是不可被搶占的;
Linux內核實現中使用了大量的封中斷操作會造成中斷的丟失;
由於使用虛擬內存技術,當發生頁出錯時,需要從硬碟中讀取交換數據,但硬碟讀寫由於存儲位置的隨機性會導致隨機的讀寫時間,這在某些情況下會影響一些實時任務的截止期限;
雖然Linux進程調度也支持實時優先順序,但缺乏有效的實時任務的調度機制和調度演算法;它的網路子系統的協議處理和其它設備的中斷處理都沒有與它對應的進程的調度關聯起來,並且它們自身也沒有明確的調度機制;
3. 各種實時Linux系統
3.1. RT-Linux和RTAI
RT -Linux是新墨西哥科技大學(New Mexico Institute of Technology)的研究成果[RTLinuxWeb][Barabanov97]。它的基本思想是,為了在Linux系統中提供對於硬實時的支持,它實現了一個微內核的小的實時操作系統(我們也稱之為RT-Linux的實時子系統),而將普通Linux系統作為一個該操作系統中的一個低優先順序的任務來運行。另外普通Linux系統中的任務可以通過FIFO和實時任務進行通信。RT-Linux的框架如圖 1所示:
圖 1 RT-Linux結構
RT -Linux的關鍵技術是通過軟體來模擬硬體的中斷控制器。當Linux系統要封鎖CPU的中斷時時,RT-Linux中的實時子系統會截取到這個請求,把它記錄下來,而實際上並不真正封鎖硬體中斷,這樣就避免了由於封中斷所造成的系統在一段時間沒有響應的情況,從而提高了實時性。當有硬體中斷到來時, RT-Linux截取該中斷,並判斷是否有實時子系統中的中斷常式來處理還是傳遞給普通的Linux內核進行處理。另外,普通Linux系統中的最小定時精度由系統中的實時時鍾的頻率決定,一般Linux系統將該時鍾設置為每秒來100個時鍾中斷,所以Linux系統中一般的定時精度為 10ms,即時鍾周期是10ms,而RT-Linux通過將系統的實時時鍾設置為單次觸發狀態,可以提供十幾個微秒級的調度粒度。
RT-Linux實時子系統中的任務調度可以採用RM、EDF等優先順序驅動的演算法,也可以採用其他調度演算法。
RT -Linux對於那些在重負荷下工作的專有系統來說,確實是一個不錯的選擇,但他僅僅提供了對於CPU資源的調度;並且實時系統和普通Linux系統關系不是十分密切,這樣的話,開發人員不能充分利用Linux系統中已經實現的功能,如協議棧等。所以RT-Linux適合與工業控制等實時任務功能簡單,並且有硬實時要求的環境中,但如果要應用與多媒體處理中還需要做大量的工作。
義大利的RTAI( Real-Time Application Interface )源於RT-Linux,它在設計思想上和RT-Linux完全相同。它當初設計目的是為了解決RT-Linux難於在不同Linux版本之間難於移植的問題,為此,RTAI在 Linux 上定義了一個實時硬體抽象層,實時任務通過這個抽象層提供的介面和Linux系統進行交互,這樣在給Linux內核中增加實時支持時可以盡可能少地修改 Linux的內核源代碼。
3.2. Kurt-Linux
Kurt -Linux由Kansas大學開發,它可以提供微秒級的實時精度[KurtWeb] [Srinivasan]。不同於RT-Linux單獨實現一個實時內核的做法,Kurt -Linux是在通用Linux系統的基礎上實現的,它也是第一個可以使用普通Linux系統調用的基於Linux的實時系統。
Kurt-Linux將系統分為三種狀態:正常態、實時態和混合態,在正常態時它採用普通的Linux的調度策略,在實時態只運行實時任務,在混合態實時和非實時任務都可以執行;實時態可以用於對於實時性要求比較嚴格的情況。
為了提高Linux系統的實時特性,必須提高系統所支持的時鍾精度。但如果僅僅簡單地提高時鍾頻率,會引起調度負載的增加,從而嚴重降低系統的性能。為了解決這個矛盾, Kurt-Linux採用UTIME所使用的提高Linux系統中的時鍾精度的方法[UTIMEWeb]:它將時鍾晶元設置為單次觸發狀態(One shot mode),即每次給時鍾晶元設置一個超時時間,然後到該超時事件發生時在時鍾中斷處理程序中再次根據需要給時鍾晶元設置一個超時時間。它的基本思想是一個精確的定時意味著我們需要時鍾中斷在我們需要的一個比較精確的時間發生,但並非一定需要系統時鍾頻率達到此精度。它利用CPU的時鍾計數器TSC (Time Stamp Counter)來提供精度可達CPU主頻的時間精度。
對於實時任務的調度,Kurt-Linux採用基於時間(TD)的靜態的實時CPU調度演算法。實時任務在設計階段就需要明確地說明它們實時事件要發生的時間。這種調度演算法對於那些循環執行的任務能夠取得較好的調度效果。
Kurt -Linux相對於RT-Linux的一個優點就是可以使用Linux系統自身的系統調用,它本來被設計用於提供對硬實時的支持,但由於它在實現上只是簡單的將Linux調度器用一個簡單的時間驅動的調度器所取代,所以它的實時進程的調度很容易受到其它非實時任務的影響,從而在有的情況下會發生實時任務的截止期限不能滿足的情況,所以也被稱作嚴格實時系統(Firm Real-time)。目前基於Kurt-Linux的應用有:ARTS(ATM Reference Traffic System)、多媒體播放軟體等。另外Kurt-Linux所採用的這種方法需要頻繁地對時鍾晶元進行編程設置。
3.3. RED-Linux
RED -Linux是加州大學Irvine分校開發的實時Linux系統[REDWeb][ Wang99],它將對實時調度的支持和Linux很好地實現在同一個操作系統內核中。它同時支持三種類型的調度演算法,即:Time-Driven、 Priority-Dirven、Share-Driven。
為了提高系統的調度粒度,RED-Linux從RT-Linux那兒借鑒了軟體模擬中斷管理器的機制,並且提高了時鍾中斷頻率。當有硬體中斷到來時,RED-Linux的中斷模擬程序僅僅是簡單地將到來的中斷放到一個隊列中進行排隊,並不執行真正的中斷處理程序。
另外為了解決Linux進程在內核態不能被搶占的問題, RED-Linux在Linux內核的很多函數中插入了搶占點原語,使得進程在內核態時,也可以在一定程度上被搶占。通過這種方法提高了內核的實時特性。
RED-Linux的設計目標就是提供一個可以支持各種調度演算法的通用的調度框架,該系統給每個任務增加了如下幾項屬性,並將它們作為進程調度的依據:
Priority:作業的優先順序;
Start-Time:作業的開始時間;
Finish-Time:作業的結束時間;
Budget:作業在運行期間所要使用的資源的多少;
通過調整這些屬性的取值及調度程序按照什麼樣的優先順序來使用這些屬性值,幾乎可以實現所有的調度演算法。這樣的話,可以將三種不同的調度演算法無縫、統一地結合到了一起。