导航:首页 > 源码编译 > 推荐算法基于内容

推荐算法基于内容

发布时间:2022-06-18 16:07:02

1. 基于内容的推荐算法给每个人建立模型么

1、为每个物品(Item)构建一个物品的属性资料(Item Profile)
2、为每个用户(User)构建一个用户的喜好资料(User Profile)
3、计算用户喜好资料与物品属性资料的相似度,相似度高意味着用户可能喜欢这个物品,相似度低往往意味着用户不喜欢这个物品。
选择一个想要推荐的用户“U”,针对用户U遍历一遍物品集合,计算出每个物品与用户U的相似度,选出相似度最高的k个物品,将他们推荐给用户U——大功告成!
下面将详细介绍一下Item Profiles和User Profiles。

2. 算法推荐服务是什么

算法推荐服务是:在本质上,算法是“以数学方式或者计算机代码表达的意见”。其中,推荐系统服务就是一个信息过滤系统,帮助用户减少因浏览大量无效数据而造成的时间、精力浪费。

并且在早期的研究提出了通过信息检索和过滤的方式来解决这个问题。到了上世纪90年代中期,研究者开始通过预测用户对推荐的物品、内容或服务的评分,试图解决信息过载问题。推荐系统由此也作为独立研究领域出现了。

用算法推荐技术是指:应用算法推荐技术,是指利用生成合成类、个性化推送类、排序精选类、检索过滤类、调度决策类等算法技术向用户提供信息。

基于内容的推荐方法:根据项的相关信息(描述信息、标签等)、用户相关信息及用户对项的操作行为(评论、收藏、点赞、观看、浏览、点击等),来构建推荐算法模型。

是否推荐算法服务会导致信息窄化的问题:

推荐技术并不是单纯地“投其所好”。在一些专家看来,在推荐已知的用户感兴趣内容基础上,如果能深入激发、满足用户的潜在需求,那么算法就能更好地满足人对信息的多维度诉求。

在外界的印象里,个性化推荐就像漏斗一样,会将推荐内容与用户相匹配,倾向于向用户推荐高度符合其偏好的内容,致使推荐的内容越来越窄化。

但与外界的固有认知相反,《报告》认为在行业实践中,互联网应用(特别是位于头部的大型平台)有追求算法多样性的内在动力。

在对行业内代表性应用的数据分析后,《报告》发现,阅读内容的类型数量是否够多、所阅读内容类型的分散程度是否够高,与用户是否能长期留存关联密切,呈正相关。上述两项指标对用户长期留存的作用,可以与信息的展现总量、用户的停留时长、用户阅读量等指标的影响相媲美。

3. 推荐算法中有哪些常用排序算法

外排序、内排序、插入类排序、直接插入排序、希尔排序、选择类排序。

推荐算法是计算机专业中的一种算法,通过一些数学算法,推测出用户可能喜欢的东西,应用推荐算法比较好的地方主要是网络。所谓推荐算法就是利用用户的一些行为,通过一些数学算法,推测出用户可能喜欢的东西。

在基于内容的推荐系统中,项目或对象是通过相关特征的属性来定义的,系统基于用户评价对象的特征、学习用户的兴趣,考察用户资料与待预测项目的匹配程度。用户的资料模型取决于所用的学习方法,常用的有决策树、神经网络和基于向量的表示方法等。基于内容的用户资料需要有用户的历史数据,用户资料模型可能随着用户的偏好改变而发生变化。

基于内容的推荐与基于人口统计学的推荐有类似的地方,只不过系统评估的中心转到了物品本身,使用物品本身的相似度而不是用户的相似度来进行推荐。



4. 推荐算法有哪些

这种形式一般可以按推荐引擎的算法分,主要有基于协同过滤、基于内容推荐等算法。 “买过此商品的人,百分之多少还买过其他啥啥商品”:协同过滤item-based filtering “和你兴趣相似的人,还买过其他啥啥商品”:协同过滤 user-based filtering “相关商品推荐”:基于内容推荐content-based “猜你喜欢” 一般混合使用推荐算法。

5. 协同过滤,基于内容推荐有什么区别

举个简单的小例子,我们已知道
用户u1喜欢的电影是A,B,C
用户u2喜欢的电影是A, C, E, F
用户u3喜欢的电影是B,D
我们需要解决的问题是:决定对u1是不是应该推荐F这部电影
基于内容的做法:要分析F的特征和u1所喜欢的A、B、C的特征,需要知道的信息是A(战争片),B(战争片),C(剧情片),如果F(战争片),那么F很大程度上可以推荐给u1,这是基于内容的做法,你需要对item进行特征建立和建模。
协同过滤的办法:那么你完全可以忽略item的建模,因为这种办法的决策是依赖user和item之间的关系,也就是这里的用户和电影之间的关系。我们不再需要知道ABCF哪些是战争片,哪些是剧情片,我们只需要知道用户u1和u2按照item向量表示,他们的相似度比较高,那么我们可以把u2所喜欢的F这部影片推荐给u1。
根据数据源的不同推荐引擎可以分为三类
1、基于人口的统计学推荐(Demographic-based Recommendation)
2、基于内容的推荐(Content-based Recommendation)
3、基于协同过滤的推荐(Collaborative Filtering-based Recommendation)
基于内容的推荐:
根据物品或内容的元数据,发现物品或内容的相关性,然后基于用户以前的喜好记录推荐给用户相似的物品
基于内容推荐的一个典型的例子,电影推荐系统,首先我们需要对电影的元数据有一个建模,这里只简单的描述了一下电影的类型;然后通过电影的元数据发现电影间的相似度,因为类型都是“爱情,浪漫”电影 A 和 C 被认为是相似的电影(当然,只根据类型是不够的,要得到更好的推荐,我们还可以考虑电影的导演,演员等等);最后实现推荐,对于用户 A,他喜欢看电影 A,那么系统就可以给他推荐类似的电影 C。

6. 简要智能阅读中智能推荐的技术原理

智能推荐算法总的来说分为两种:基于内容的推荐算法和协同过滤推荐算法。

基于内容的推荐算法:

根据内容的相似度(静态的东西)进行推荐,内容不好提取的可以采取贴标签的形式来区分计算内容的相似程度。然后根据用户的喜好设置,关注等进行相似内容推荐。

协同过滤推荐算法:

根据动态信息来进行推荐,即推荐的过程是自动的,推荐结果的产生是系统从用户的购买行为或浏览记录等隐式信息拿到的,无需用户通过填表格等方式来明确自己的喜好。因为这些数据都是要读到内存中进行运算的,所以又叫基于内存的协同过滤(Memory-based Collaborative Filtering),另一种协同过滤算法则是基于模型的协同过滤(Model-based Collaborative Filtering);m个物品,m个用户的数据,只有部分用户和部分数据之间是有评分数据的,其它部分评分是空白,此时我们要用已有的部分稀疏数据来预测那些空白的物品和数据之间的评分关系,找到最高评分的物品推荐给用户。对于这个问题,用机器学习的思想来建模解决,主流的方法可以分为:用关联算法,聚类算法,分类算法,回归算法,矩阵分解,神经网络,图模型以及隐语义模型来解决。

(https://www.cnblogs.com/chenliyang/p/6548306.html)

而基于内存的协同过滤又有两种:

7. 推荐算法有哪些

推荐算法大致可以分为三类:基于内容的推荐算法、协同过滤推荐算法和基于知识的推荐算法。 基于内容的推荐算法,原理是用户喜欢和自己关注过的Item在内容上类似的Item,比如你看了哈利波特I,基于内容的推荐算法发现哈利波特II-VI,与你以前观看的在内容上面(共有很多关键词)有很大关联性,就把后者推荐给你,这种方法可以避免Item的冷启动问题(冷启动:如果一个Item从没有被关注过,其他推荐算法则很少会去推荐,但是基于内容的推荐算法可以分析Item之间的关系,实现推荐),弊端在于推荐的Item可能会重复,典型的就是新闻推荐,如果你看了一则关于MH370的新闻,很可能推荐的新闻和你浏览过的,内容一致;另外一个弊端则是对于一些多媒体的推荐(比如音乐、电影、图片等)由于很难提内容特征,则很难进行推荐,一种解决方式则是人工给这些Item打标签。 协同过滤算法,原理是用户喜欢那些具有相似兴趣的用户喜欢过的商品,比如你的朋友喜欢电影哈利波特I,那么就会推荐给你,这是最简单的基于用户的协同过滤算法(user-based collaboratIve filtering),还有一种是基于Item的协同过滤算法(item-based collaborative filtering),这两种方法都是将用户的所有数据读入到内存中进行运算的,因此成为Memory-based Collaborative Filtering,另一种则是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚类,SVD,Matrix Factorization等,这种方法训练过程比较长,但是训练完成后,推荐过程比较快。 最后一种方法是基于知识的推荐算法,也有人将这种方法归为基于内容的推荐,这种方法比较典型的是构建领域本体,或者是建立一定的规则,进行推荐。 混合推荐算法,则会融合以上方法,以加权或者串联、并联等方式尽心融合。 当然,推荐系统还包括很多方法,其实机器学习或者数据挖掘里面的方法,很多都可以应用在推荐系统中,比如说LR、GBDT、RF(这三种方法在一些电商推荐里面经常用到),社交网络里面的图结构等,都可以说是推荐方法。

8. 今日头条的新闻推荐算法是怎样的呢

今日头条开始逐步引入个性化推荐的策略。他们所采用的,是协同过滤(Collaborative Filtering)** + 基于内容推荐,直到今天依然构成今日头条推荐算法的基础。
(协同过滤)是一个很好的方法,直到今天我们还一直使用。但缺点也很明显,对于没有行为(记录)的文章,没办法推荐,所以没办法用于文章的冷启动。所以我们引入了基于内容推荐的策略。比如计算文章的分类、文章的关键词,然后根据用户对文章的阅读、浏览等信息,细化用户的个人资料。——这样子,如果文章是和科技相关的,而用户的个人资料也显示科技相关,那么就算匹配。”

在之后的工作,是把特征、模型做得更加细化。比如,文章实体词的抽取。我们最近对文章的分析,已经做得很细,可以精确地提取实体词。我们近期引入了‘词嵌入’(word embedding)方法,做向量化的分析,还引入 LDA 的方法,进行 topic 分析等等。

9. 国内电子商务网站所运用的推荐技术有什么什么基于内容的、知识的、协调过滤,具体点,最好有截图,谢谢

凡客的推荐系统做的比较好,因为主要经营服装产品,所以主要采用协同过滤推荐算法,例如“浏览该产品的用户都购买了什么”“购买过该商品的用户还购买了什么”;
京东商城有猜你喜欢,应该是基于浏览记录和消费记录的商品内容采用基于内容过滤的推荐算法实现的,但是协同过滤还是主要的;
亚马逊、当当这类主要经营书籍的购物平台在个性化推荐中,根据用户的搜索内容、浏览记录、消费记录采用基于内容过滤的推荐算法,还有就是基于关联规则的推荐,推荐相关书籍给用户;
视频网站薯仔网的个性化推荐做得比优酷人性化。不用登陆即可记录用户的浏览记录,根据历史浏览内容向用户推荐相关视频,一般同导演相关或者同演员相关。优酷和薯仔的共同点是还是把协同过滤当做重点,“浏览过该影片的用户还喜欢看”。
在推荐系统当中,个性化推荐和共性推荐都很重要。每个电商网站一定有共性推荐的部分,例如最近商品、热门商品,还有一些基于共性消费模式的关联推荐。
希望都你有所帮助。

10. 推荐算法的基于知识推荐

基于知识的推荐(Knowledge-based Recommendation)在某种程度是可以看成是一种推理(Inference)技术,它不是建立在用户需要和偏好基础上推荐的。基于知识的方法因它们所用的功能知识不同而有明显区别。效用知识(Functional Knowledge)是一种关于一个项目如何满足某一特定用户的知识,因此能解释需要和推荐的关系,所以用户资料可以是任何能支持推理的知识结构,它可以是用户已经规范化的查询,也可以是一个更详细的用户需要的表示。

阅读全文

与推荐算法基于内容相关的资料

热点内容
云服务器设置ad域 浏览:313
我的世界无尽贪婪奇点压缩器 浏览:391
源码资源免费分享网 浏览:684
批量qq号有效验证源码 浏览:511
本科程序员五年工资 浏览:899
创维电视柜怎么安装app 浏览:850
可爱的程序员陆漓剧照 浏览:850
怎样把截屏压缩成300kb 浏览:224
dart文件加密 浏览:39
java对接摄像头源码 浏览:885
安卓项目开发实例附源码 浏览:728
程序员苹果全家桶 浏览:197
远程命令阻塞 浏览:731
有网页源码怎么查数据 浏览:100
win10下make编译速度过慢 浏览:866
微机原理编译环境 浏览:19
怎么把图纸转换成pdf 浏览:541
安卓libcurl编译64 浏览:905
手机app怎么测速 浏览:276
中兴gpon命令 浏览:885