① 幻方算法
N为4的倍数时
采用对称元素交换法。
首先把数1到n×n按从上至下,从左到右顺序填入矩阵
然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对
称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变。
(或者将对角线不变,其它位置对称交换也可)
N 为其它偶数时
当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵。
按上述奇数阶幻方给分解的4个子方阵对应赋值
上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)
即4个子方阵对应元素相差v,其中v=n*n/4
四个子矩阵由小到大排列方式为 ① ③
④ ②
然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j<t或j>n-t+2),
a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换
其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等。
奇阶
首行中间写1,然后向右上依次填2,3顺着写,出上移下,出右移左,双出(边角)就写在那个数下边。
② 幻方怎么填,有计算方法吗
幻方算法(Magic Square)学习笔记
一、幻方按照阶数可分成了三类,即奇数阶幻方、双偶阶幻方、单偶阶幻方。
二、奇数阶幻方(劳伯法)
奇数阶幻方最经典的填法是罗伯法。填写的方法是:
把1(或最小的数)放在第一行正中;按以下规律排列剩下的(n×n-1)个数:
1、每一个数放在前一个数的右上一格;
2、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;
3、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;
4、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在底行且最左列;
5、如果这个数所要放的格已经有数填入,那么就把它放在前一个数的下一行同一列的格内。
三、双偶数阶幻方(海尔法)
所谓双偶阶幻方就是当n可以被4整除时的偶阶幻方,即4K阶幻方。在说解法之前我们先说明一个“互补数”定义:就是在n阶幻方中,如果两个数的和等于幻方中最大的数与1的和(即n×n+1),我们称它们为一对互补数。
如在三阶幻方中,每一对和为10的数,是一对互补数 ;在四阶幻方中,每一对和为17的数,是一对互补数。
双偶数阶幻方最经典的填法是海尔法。填写的方法是:
以8阶幻方为例:
1、先把数字按顺序填。然后,按4×4把它分割成4块。
2、每个小方阵对角线上的数字(如左上角小方阵部分),换成和它互补的数。
四、单偶数阶幻方(斯特拉兹法)
所谓单偶阶幻方就是当n不可以被4整除时的偶阶幻方,即4K+2阶幻方。如(n=6,10,14……)的幻方。
单偶数阶幻方最经典的填法是斯特拉兹法。填写的方法是:
以10阶幻方为例。这时,k=2。
1、把魔方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用罗伯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。
2、在A象限的中间行、中间格开始,按自左向右的方向,标出k格。A象限的其它行则标出最左边的k格。将这些格,和C象限相对位置上的数互换位置。
3、在B象限所有行的中间格,自右向左,标出k-1格。(注:6阶幻方由于k-1=0,所以不用再作B、D象限的数据交换),将这些格,和D象限相对位置上的数互换位置。
(2)幻方阵算法证明扩展阅读:
种类
完全幻方
完全幻方指一个幻方行、列、主对角线及泛对角线各数之和均相等 。
乘幻方
乘幻方指一个幻方行列、对角线各数乘积相等。
高次幻方
n阶幻方是由前n^2(n的2次方)个自然数组成的一个n阶方阵,其各行、各列及两条对角线所含的n个数的和相等。
高次幻方是指,当组成幻方各数替换为其2,3,...,k次幂时,仍满足幻方条件者,称此幻方为k次幻方。
反幻方
反幻方的定义:在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和不相等,具有这种性质的图表,称为“反幻方”。
反幻方与正幻方最大的不同点是幻和不同,正幻方所有幻和都相同,而反幻方所有幻和都不同。所谓幻和就是幻方的任意行、列及对角线几个数之和。如下图3阶反幻方的比较。
参考资料来源:网络-幻方
③ 求一个n阶魔方阵的算法用标准c语言的风格来做的
对平面魔方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式)
⑴ N 为奇数时,最简单
(1) 将1放在第一行中间一列;
(2) 从2开始直到n×n止各数依次按下列规则存放:
按 45°方向行走,如向右上
每一个数存放的行比前一个数的行数减1,列数加1
(3) 如果行列范围超出矩阵范围,则回绕。
例如1在第1行,则2应放在最下一行,列数同样加1;
(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,
则把下一个数放在上一个数的下面。
⑵ N为4的倍数时
采用对称元素交换法。
首先把数1到n×n按从上至下,从左到右顺序填入矩阵
然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对
称交换,即a(i,j)与a(n+1-i,n+1-j)交换,所有其它位置上的数不变。
(或者将对角线不变,其它位置对称交换也可)
⑶ N 为其它偶数时
当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵。
按上述奇数阶魔方给分解的4个子方阵对应赋值
上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)
即4个子方阵对应元素相差v,其中v=n*n/4
四个子矩阵由小到大排列方式为 ① ③
④ ②
然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j<t或j>n-t+2),
a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换
其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等。
snjsj 我的程序算法:
这个魔方阵的算法可以对除2以外的任意阶数的方阵进行输出,结果保存在运行程序的目录下面的Magic.txt文件中,用ie或者写字板打开以保持格式的一致(主要是回车符在记事本中为黑方框,认不出来)。当然具体的程序中,有内存空间以及变量范围的约束,我试过了,100以内的是可以的。
偶数阶的算法都是建立在奇数阶的基础之上,设方阵的阶数为n,则魔方阵常数(即每列每行以及对角线元素之和)为n*(n*n+1)/2。
请对照程序代码看,否则可能看不懂,可以一边看一边用笔对小阶的进行演算。
先说奇数阶的算法,这是最容易的算法:
n=2*m+1,m为自然数
1)将数字1填在(0,(n+1)/2) ;要注意c中是从下标0开始
2)从左上往右下依次填。
3)由2),列的下标出界(超过n-1)时,行加1,以n为摸的余数为应填的列数;
4)由2),行的下标出界(超过n-1)时,列加1,以n为摸的余数为应填的行数;
5)由2),行列都未出界,但已添上其他数,应在当前位置左横移一个位置进行填数。
然后是偶数阶:
分两种情况,一种是n%4==2,一种是n%4==0
前一种:n=2*(2*m+1),m为自然数
1)将n阶方阵分为四个小魔方阵ABCD如下排列:
B C
D A
因为n*n=4*(2*m+1)*(2*m+1),
记u=n/2=2*m+1,分为1~u*u,u*u+1~2*u*u,2*u*u+1~3*u*u,3*u*u+1~4*u*u
即在调用子函数的时候分别如下面传递参数:
A(0),B(u*u),C(2*u*u),D(3*u*u)
分别在ABCD中按照前面的填法把奇数阶填好(注意加上所传参数作为基数,每一个元素都要加上这个值),最后做如下交换:
(1)B中第0~(m-1)-1行中元素与C中相对应元素交换
(2)D中第(n-1)-m+1~(n-1)共m行的每行中的元素与A中相对应元素交换
(3)交换D:(u+m,m)与A中对应元素(矩阵中心值)
(4)交换D:(n-1,m)与A中对应元素(实际为矩阵最大值n*n)
所谓对应位置,指相对于小魔方阵的左顶角的相对的行列位置
上面的这些你可以用数学进行证明,利用魔方阵常数(注意n阶的和u阶的关系)
后一种:n=4*m,m为自然数
因为行列都是4的倍数,因而可以将整个矩阵分为每4*4的小矩阵。
先判断一个数是否在划为4*4小矩阵的对角线上,
如果在,则填该位置的数为n*n-i+1(i为该元素的相对位置,从1开始,比如n阶的第s行第t个元素则其i=s*n+t)
如果不在,则填上i。
④ 求幻方的C语言算法!
你先看看吧:
3阶幻方:
8 1 6
3 5 7
4 9 2
5阶幻方:
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
#include <stdio.h>
#define N 5
void main()
{
int i,j,k,a[N][N];
for(i=0;i<N;i++)
for(j=0;j<N;j++)
a[i][j]=0; /*初始值为零*/
j=N/2;
a[0][j]=1; /*确定1的位置*/
for(k=2;k<=N*N;k++)
{
i--;
j++;
if(i<0)
i=N-1; /*行出界*/
else if(j>N-1)
j=0; /*列出界*/
if(a[i][j]==0)
a[i][j]=k; /*按规律顺序确定数值位置*/
else
{
i=(i+2)%N;
j=(j-1+N)%N;
a[i][j]=k; /*已有数字时数字的位置*/
}
}
printf("\n\n");
for(i=0;i<N;i++)
{
printf("\t");
for(j=0;j<N;j++)
printf("%4d",a[i][j]); /*显示幻方阵*/
printf("\n\n");
}
return;
}
最好是自己研究下 ,印象比较深刻。
好好学习呀 其实我也只是个初学者
⑤ 幻方的构造原理
在《射雕英雄传》中郭黄二人被裘千仞追到黑龙潭,躲进瑛姑的小屋。瑛姑出了一道题:数字1~9填到三行三列的表格中,要求每行、每列、及两条对角线上的和都相等。这道题难倒了瑛姑十几年,被黄蓉一下子就答出来了。 492357816这就是一个最简单的3阶平面幻方。因为幻方的智力性和趣味性,很多游戏和玩具都与幻方有关,如捉放曹、我们平时玩的六面体,也成为学习编程时的常见问题。
幻方又称纵横图、九宫图,最早记录于中国古代的洛书。夏禹治水时,河南洛阳附近的大河里浮出了一只乌龟,背上有一个很奇怪的图形,古人认为是一种祥瑞,预示着洪水将被夏禹王彻底制服。后人称之为洛书或河图,又叫河洛图。
南宋数学家杨辉,在他着的《续古摘奇算法》里介绍了这种方法:只要将九个自然数按照从小到大的递增次序斜排,然后把上、下两数对调,左、右两数也对调;最后再把中部四数各向外面挺出,幻方就出现了。(摘自《趣味数学辞典》)
最简单的幻方就是平面幻方,还有立体幻方、高次幻方等。对于立体幻方、高次幻方世界上很多数学家仍在研究,只讨论平面幻方。
对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式)
1、 N 为奇数时,最简单:
⑴ 将1放在第一行中间一列;
⑵ 从2开始直到n×n止各数依次按下列规则存放:
按 45°方向行走,如向右上
每一个数存放的行比前一个数的行数减1,列数加1
⑶ 如果行列范围超出矩阵范围,则回绕。
例如1在第1行,则2应放在最下一行,列数同样加1;
⑷ 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,
则把下一个数放在上一个数的下面。
2、 N为4的倍数时
采用对称元素交换法。
首先把数1到n×n按从上至下,从左到右顺序填入矩阵
然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对
称交换,即a(i,j)与a(n+1-i,n+1-j)交换,所有其它位置上的数不变。
(或者将对角线不变,其它位置对称交换也可)
**以上方法只适合于n=4时**
3、 N 为其它偶数时
当n为非4倍数的偶数(即4n+2形)时:首先把大方阵分解为4个奇数(2m+1阶)子方阵。
按上述奇数阶幻方给分解的4个子方阵对应赋值
由小到大依次为上左子阵(i),下右子(i+v),上右子阵(i+2v),下左子阵(i+3v),
即4个子方阵对应元素相差v,其中v=n*n/4
四个子矩阵由小到大排列方式为 ① ③
④ ②
然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j<t或j>n-t+2),
a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换
其中u=n/2,t=(n+2)/4 上述交换使行列及对角线上元素之和相等。
C语言实现 #includestdio.h#includemath.hinta[256][256];intsum;intcheck();voidins(intn);voidmain(){inti,j,n,k,t,p,x;scanf(%d,&n);sum=(n*n+1)*n/2;if(n%2==1)//奇数幻方ins(n);if(n%4==2){//单偶数幻方k=n/2;ins(k);for(i=0;i<k;i++)for(j=0;j<k;j++){a[i][j+k]=a[i][j]+2*k*k;a[i+k][j]=a[i][j]+3*k*k;a[i+k][j+k]=a[i][j]+k*k;}t=(n-2)/4;for(i=0;i<k;i++)for(j=0;j<k;j++){if((j<t)&&(i<t)){p=a[i][j];a[i][j]=a[i+k][j];a[i+k][j]=p;}if((j<t)&&(i>k-t-1)){p=a[i][j];a[i][j]=a[i+k][j];a[i+k][j]=p;}if((i>=t&&i<=k-t-1)&&(j>=t&&j<t*2)){p=a[i][j];a[i][j]=a[i+k][j];a[i+k][j]=p;}if(j>1&&j<=t){p=a[i][j+k];a[i][j+k]=a[i+k][j+k];a[i+k][j+k]=p;}}}if(n%4==0){//双偶数幻方x=1;for(i=0;i<n;i++)for(j=0;j<n;j++)a[i][j]=x++;for(i=0;i<n;i++)for(j=0;j<n;j++){if(i%4==0&&abs(i-j)%4==0)for(k=0;k<4;k++)a[i+k][j+k]=n*n-a[i+k][j+k]+1;elseif(i%4==3&&(i+j)%4==3)for(k=0;k<4;k++)a[i-k][j+k]=n*n-a[i-k][j+k]+1;}}if(check(n)==1){for(i=0;i<n;i++){for(j=0;j<n;j++)printf(%5d,a[i][j]);printf(
);}}}intcheck(intn){//检验是否是幻方inti,j,sum1=0,sum2;for(i=0;i<n;i++){for(j=0;j<n;j++)sum1+=a[i][j];if(sum1!=sum)return0;sum1=0;}for(i=0;i<n;i++){for(j=0;j<n;j++)sum1+=a[i][j];if(sum1!=sum)return0;sum1=0;}for(sum1=0,sum2=0,i=0,j=0;i<n;i++,j++){sum1+=a[i][j];sum2+=a[i][n-j-1];}if(sum1!=sum)return0;if(sum2!=sum)return0;elsereturn1;}voidins(intn){//单偶数幻方的输入intx,y,m;x=0;y=n/2;for(m=1;m<=n*n;m++){a[x][y]=m;if(m%n!=0){x--;y++;if(x<0)x=x+n;if(y==n)y=n-y;}else{x++;if(x==n)x=x-n;}}}//c++语言实现//(1)求奇数幻方#include<iostream.h>#include<iomanip.h>intmain(){intn,x,y,tot=0,i,j,a[100][100]={0};cout<<请输入一个奇数<<endl;cin>>n;a[i=n/2][j=0]=++tot;i--;j--;while(tot<=n*n){i<0?i=n-1:i=i;j<0?j=n-1:j=j;if(a[i][j]){i=x;j=y+1;}a[i][j]=++tot;x=i;y=j;i--;j--;}for(i=0;i<n;i++){for(j=0;j<n;j++)cout<<setw(3)<<a[i][j];cout<<endl;}return0;}//(2)求单偶幻方#include<iostream.h>#include<iomanip.h>intmain(){intn,i=0,j=0,a[100][100],tot=0;cout<<请输入4的倍数<<endl;cin>>n;for(i=0;i<n;i++)for(j=0;j<n;j++){a[i][j]=++tot;}for(i=0;i<n;i++){for(j=0;j<n;j++){if(i%4==j%4||i%4+j%4==3)a[i][j]=n*n+1-a[i][j];}}for(i=0;i<n;i++){for(j=0;j<n;j++){cout<<setw(4)<<a[i][j];}cout<<endl;}return0;}奇阶幻方
当n为奇数时,我们称幻方为奇阶幻方。可以用Merzirac法与loubere法实现,根据我的研究,发现用国际象棋之马步也可构造出更为神奇的奇幻方,故命名为horse法。
偶阶幻方
当n为偶数时,我们称幻方为偶阶幻方。当n可以被4整除时,我们称该偶阶幻方为双偶幻方;当n不可被4整除时,我们称该偶阶幻方为单偶幻方。可用了Hire法、Strachey以及YinMagic将其实现,Strachey为单偶模型,我对双偶(4m阶)进行了重新修改,制作了另一个可行的数学模型,称之为Spring。YinMagic是我于2002年设计的模型,他可以生成任意的偶阶幻方。
在填幻方前我们做如下约定:如填定数字超出幻方格范围,则把幻方看成是可以无限伸展的图形,如下图:
Merzirac法生成奇阶幻方
在第一行居中的方格内放1,依次向右上方填入2、3、4…,如果右上方已有数字,则向下移一格继续填写。如下图用Merziral法生成的5阶幻方: 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 loubere法生成奇阶幻方
在居中的方格向上一格内放1,依次向右上方填入2、3、4…,如果右上方已有数字,则向上移二格继续填写。如下图用Louberel法生成的5阶幻方: 23 6 19 2 15 10 18 1 14 22 17 5 13 21 9 4 12 25 8 16 11 24 7 20 3 Hire法生成偶阶幻方
将n阶幻方看作一个矩阵,记为A,其中的第i行j列的数字记为a(i,j)。在A内两对角线上填写1、2、3、……、n,各行再填写1、2、3、……、n,使各行各列数字之和为n*(n+1)/2。填写方法为:第1行从n到1填写,从第2行到第n/2行按从1到进行填写(第2行第1列填n,第2行第n列填1),从第n/2+1到第n行按n到1进行填写,对角线的方格内数字不变。如下所示为6阶填写方法:
1 5 4 3 2 6
6 2 3 4 5 1
1 2 3 4 5 6
6 5 3 4 2 1
6 2 4 3 5 1
1 5 4 3 2 6
如下所示为8阶填写方法(转置以后):
1 8 1 1 8 8 8 1
7 2 2 2 7 7 2 7
6 3 3 3 6 3 6 6
5 4 4 4 4 5 5 5
4 5 5 5 5 4 4 4
3 6 6 6 3 6 3 3
2 7 7 7 2 2 7 2
8 1 8 8 1 1 1 8
将A上所有数字分别按如下算法计算,得到B,其中b(i,j)=n×(a(i,j)-1)。则AT+B为目标幻方
(AT为A的转置矩阵)。如下图用Hire法生成的8阶幻方:
1 63 6 5 60 59 58 8
56 10 11 12 53 54 15 49
41 18 19 20 45 22 47 48
33 26 27 28 29 38 39 40
32 39 38 36 37 27 26 25
24 47 43 45 20 46 18 17
16 50 54 53 12 11 55 9
57 7 62 61 4 3 2 64
⑴.Strachey法生成单偶幻方
将n阶单偶幻方表示为4m+2阶幻方。将其等分为四分,成为如下图所示A、B、C、D四个2m+1阶奇数幻方。
A C
D B
A用1至2m+1填写成(2m+1)2阶幻方;B用(2m+1)2+1至2*(2m+1)2填写成2m+1阶幻方;C用2*(2m+1)2+1至3*(2m+1)2填写成2m+1阶幻方;D用3*(2m+1)2+1至4*(2m+1)2填写成2m+1阶幻方;在A中间一行取m个小格,其中1格为该行居中1小格,另外m-1个小格任意,其他行左侧边缘取m列,将其与D相应方格内交换;B与C接近右侧m-1列相互交换。如下图用Strachey法生成的6阶幻方:
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
⑵Spring法生成以偶幻方
将n阶双偶幻方表示为4m阶幻方。将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j)。
先令a(i,j)=(i-1)*n+j,即第一行从左到可分别填写1、2、3、……、n;即第二行从左到可分别填写n+1、n+2、n+3、……、2n;…………之后进行对角交换。对角交换有两种方法:
方法一;将左上区域i+j为偶数的与幻方内以中心点为对称点的右下角对角数字进行交换;将右上区域i+j为奇数的与幻方内以中心点为对称点的左下角对角数字进行交换。(保证不同时为奇或偶即可。)
方法二;将幻方等分成m*m个4阶幻方,将各4阶幻方中对角线上的方格内数字与n阶幻方内以中心点为对称点的对角数字进行交换。
如下图用Spring法生成的4阶幻方:
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
YinMagic构造偶阶幻方
先构造n-2幻方,之后将其中的数字全部加上2n-2,放于n阶幻方中间,再用该方法将边缘数字填写完毕。该方法适用于n>4的所有幻方,我于2002年12月31日构造的数学模型。YinMagic法可生成6阶以上的偶幻方。如下图用YinMagic法生成的6阶幻方:
10 1 34 33 5 28
29 23 22 11 18 8
30 12 17 24 21 7
2 26 19 14 15 35
31 13 16 25 20 6
9 36 3 4 32 27
魔鬼幻方
如将幻方看成是无限伸展的图形,则任何一个相邻的n*n方格内的数字都可以组成一个幻方。则称该幻方为魔鬼幻方。
用我研究的Horse法构造的幻方是魔鬼幻方。如下的幻方更是魔鬼幻方,因为对于任意四个在两行两列上的数字,他们的和都是34。此幻方可用YinMagic方法生成。
15 10 3 6
4 5 16 9
14 11 2 7
1 8 13 12
罗伯法:
1居上行正中央,依次斜填右上方,上出框往下填,
右出框左边放,排重便在下格填,右上排重一个样。
⑥ 幻方解法
按照图片的方法楼梯法填写9个数,然后“中部四数各向外挺出“,就得到结果了。下面是5阶幻方的演示,其实3阶幻方也是一样的。
⑦ 求18阶幻方的算法,谢谢!!
田字镜射法( 4k +2 阶)
本法仅能填制 4 k + 2 ( 即6、10、14、18、22、26、30......等)阶的魔方阵。
本法填制魔方阵时,先将整个方阵划成田字型的四个 2 k + 1 阶的奇数阶小方阵,并以下法做注记:
1右半两个小方阵中大于 k+2 的行。
2左半两个小方阵中 ( k + 1 , k + 1 ) 的格位。
3左半两个小方阵中除了 ( 1 , k + 1 ) 的格位之外,小于 k +1 的行。
以简捷连续填制法依左上、右下、右上、左下的顺序分别填制这四个小方阵。
将上半及下半方阵中有注记的数字对调,魔方阵完成。
如果对简捷连续填制法尚能掌握,在填入数字时,可在遇到注记变化时,立刻切换到另一个方阵, 则整个方阵就可以一口气填完了。
==================================================
给我你的邮箱,我给你发过去
⑧ 急求一判断是否是幻方的算法!
横向纵向最中间的一行相加,看是否相等,