Ⅰ 最早的C语言编译器是什么做的
汇编。这真的是最早最早的。
准确的来说,这和编译器的开发有关,不用说太细,很麻烦怕你不懂。你现在假设第一个编译器是用会变写出来的,它的功能很简单,就是解释简单一种类似于C语言的高级语言,但是这种所谓的高级语言还没有完全拥有C语言的所有特性。只有比较简单核心功能,比如能把文本文件的高级语言转换成机器代码并且执行。
有了这个原型之后,就可以用这个编译器来解释简单C程序,就可以用C重写编写一个新的编译器,这样就有更多的C的功能。于是,从此之后就用现有的编译器解释更复杂的语言,用更复杂的语言写出更好的编译器,然后不断这样迭代。这确实是编译器的演变。
然后最后一个问题就是当一个新的CPU发明过后,怎么办,需要重写又从汇编开始写编译器吗?答案是不用。假设你有一个CPU A执行一些代码,你用汇编写了一个基础的C编译器,然后用C写出了更复杂的编译器,接受更复杂的C功能,然后不断循环演化。现在你有了CPU B,CPU B和CPU A执行两套完全不同的代码,那如何让CPU B的机器也可以变异C语言呢?因为现在A上面已经可以运行非常复杂的C语言程序了,所以你可以在A上面开发一个编译器把C语言程序转化为CPU B的执行代码。然后用这个程序,直接编译你的C语言编译器,再把这个程序转换到有B命令集的电脑上面,这样你就开发出了B电脑需要的C语言编译器。
所以除非你真的是活在非常早起的人类。否在现在的编译器基本上都利用这种原理直接编译已经用C语言或者其它高级语言写好的代码来产生新的编译器就行了。理论上可以只使用C语言来开发C的编译器,不过处于一些历史原因和底层效率等因素的考量,部分代码还是使用汇编来实现的。
我举得不过是一个例子,不一定是真实的C语言编译的进化,何况有这么多不同的C语言编译器,每一个的发展历史都有小的不同。但是基本上都是利用了这种编译器编译新的编译器的思想来实现了。而这样回溯回去,最早的编译器只能使用汇编来些。而其实最早的汇编语言的编译器就只能使用机器语言来写了。不过都是先处理简单的转换任务,有了这个核心功能过后,就可以写程序转换更复杂的语法。然后越来越复杂。就有了各种各样的高级语言编译器了。
Ⅱ 计算机各种语言编译器怎么来的
大部分的语言编译器都是用C开发的(核心部分则可能用到汇编),这一点与操作系统的开发类似(比如linux或者Windows),后期的各种IDE或者软件部分可能用诸如C++、Delphi(这两个在linux上都有对应的版本)或者VB等等开发。
最初的汇编编译器当然是直接用二进制机器码开发的。“是不是这个编译器编写出的程序也必须在这个相应的操作系统上运行?”这个并不完全正确,有些语言是可以跨平台运行的的,比如JAVA,它的口号就是,“一次编译,到处运行”
Ⅲ 计算机高级语言是怎么编出来的
看样子楼主还没分清语言和编译器啊,语言是一种规范,是一个功能的逻辑结构,编译器才是计算机上的实现。
Ⅳ 什么是编译器
编译器,是将便于人编写,阅读,维护的高级计算机语言翻译为计算机能识别,运行的低级机器语言的程序。编译器将源程序(Source program)作为输入,翻译产生使用目标语言(Target language)的等价程序。源程序一般为高级语言(High-level language),如Pascal,C++等,而目标语言则是汇编语言或目标机器的目标代码(Object code),有时也称作机器代码(Machine code)。
一个现代编译器的主要工作流程如下:
源程序(source code)→预处理器(preprocessor)→编译器(compiler)→汇编程序(assembler)→目标程序(object code)→连接器(链接器,Linker)→可执行程序(executables])
工作原理
翻译是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器言)。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。
典型的编译器输出是由包含入口点的名字和地址以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的可执行程序。
编译器种类
编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高级语言作为输入,输出也是高级语言的编译器。例如: 自动并行化编译器经常采用一种高级语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。
预处理器(preprocessor)
作用是通过代入预定义等程序段将源程序补充完整。
编译器前端(frontend)
前端主要负责解析(parse)输入的源程序,由词法分析器和语法分析器协同工作。词法分析器负责把源程序中的‘单词’(Token)找出来,语法分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。
例如“a = b + c;”前端词法分析器看到的是“a, =, b , +, c;”,语法分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。
前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在次基础上进一步优化,处理。
编译器后端(backend)
编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。
一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。
编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源程序的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源程序的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。
常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的 变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等等。
上述的程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变新有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。 优化和变形的目的是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threaded code)。
机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。
Ⅳ 编译器是怎么被编译出来的
我们要在Y系统上做一个C语言的编译器,假定:X与Y是不同的两种计算机,其指令系统不兼容。考虑以下几种情况:
Case 1: Y上没有C语言编译器,但X系统上有。
那么我们可以先在X系统上开发一个针对Y系统的C语言交叉编译器。然后用这个交叉编译器重新编译已有的这个C编译器的源代码,就可以得到能在Y系统上运行的C语言编译器了。(交叉编译器:在X系统上运行的编译器,但编译出来的目标代码在Y系统上运行。嵌入式平台上的程序基本都是交叉编译得到的,因为嵌入式平台上很少会有自己的编译器)
Case 2: X,Y上都没有C语言编译器,但有另一种语言的编译器。
a.我们可以先划出C语言的一个子集,这个子集必须满足两个条件:首先,必须足够简单,简单到可以用另一种语言来编写接受这个子集的编译器;其次,必须足够强大,强大到用这个语言子集就可以编写出接受C语言的编译器。(你一定奇怪为什么一个语言的子集就能写出接收整个语言的编译器,呵呵。我猜是因为一个语言的很多复杂特性都是由简单特性构成的,就像一个struct结构完全可以用几个定义在一起的简单变量代替实现;而且,编译器的实现往往不会用到这个语言的高级特性,需要用的都加到那个子集里就行。)
b.再用另一种语言编写一个能接受这个C语言子集的编译器,只要保证可以在Y系统上正确运行就行,并不对其效率作要求,因为基本上它只被用一次。
c.然后,用C语言的子集编写一个在Y系统上的C语言编译器,用上一步得到的编译器编译得到可用的Y系统上的C编译器。
Ⅵ 什么是c编译器有什么用,可以用它来写C语言吗
所谓c语言编译器,就是把编程得到的文件,比如.c,.h的文件,进行读取,并对内容进行分析,按照c语言的规则,将其转换成系统可以执行的二进制文件。
其本质在于对文件的读入,分析,及处理。这些操作,c语言都是可以实现的。
所以用c语言来做c语言的编译器是完全可行的。
但是,历史上的第一个c语言编译器,肯定不是c语言写的,因为在没有编译器时,无法把c语言转换成可执行文件。
只要有了第一版其它语言的编译器,就可以用c语言写编译器了。
事实上,目前大多数的c语言编译器,都是用c语言写的。
Ⅶ 为什么高级语言编程需要编译器
语言是人定义的,举个简单的例子 你创造个编译器定义语句 “我实现A+B”,在编译器里面你事先定义了这个句子等价于C语言的 int C=A + B;再由C语言通过类似的方法转换成汇编语言,这样就把高级语言一步步处理成计算机能执行的每步。打个比方。一栋房子很高,顶楼就是高级语言,楼梯就是编译器,底层就是计算机能识别的操作。比如JAVA就是用C写的,其楼层比C高。一般来说,同等算法条件下C语言执行更快。关于楼梯的原理(编译器),你想了解的话你的看编译原理相关书籍,上面涉及很多数学知识,包括很多状态转化,词法分析,语义分析。比如int C=A+B中如何识别INT是什么东西。“=”的意义等问题。说实话,如果你不是计算机专业,理解这个有困难的。对于一般人来说,不用从事相关工作的话,知道大概这个是干嘛的就行了。比如你盖个房子,你需要扳手,难道你要先学采铁矿学冶炼学制作扳手的方法?。。