导航:首页 > 源码编译 > 01背包问题的算法解决

01背包问题的算法解决

发布时间:2025-08-24 05:35:58

Ⅰ 01背包问题

算法分析

对于背包问题,通常的处理方法是搜索。
用递归来完成搜索,算法设计如下:
function Make( i {处理到第i件物品} , j{剩余的空间为j}:integer) :integer;
初始时i=m , j=背包总容量
begin
if i:=0 then
Make:=0;
if j>=wi then (背包剩余空间可以放下物品 i )
r1:=Make(i-1,j-wi)+v; (第i件物品放入所能得到的价值 )
r2:=Make(i-1,j)(第i件物品不放所能得到的价值 )
Make:=max{r1,r2}
end;
这个算法的时间复杂度是O(2^n),我们可以做一些简单的优化。
由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单?quot;以空间换时间"。
我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。
同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。
考虑用动态规划的方法来解决,这里的:
阶段是:在前N件物品中,选取若干件物品放入背包中;
状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值;
决策是:第N件物品放或者不放;
由此可以写出动态转移方程:
我们用f[i,j]表示在前 i 件物品中选择若干件放在所剩空间为 j 的背包里所能获得的最大价值
f[i,j]=max{f[i-1,j-Wi]+Pi (j>=Wi), f[i-1,j]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c的背包中”,此时能获得的最大价值就是f[v-c]再加上通过放入第i件物品获得的价值w。
这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]
算法设计如下:
procere Make;
begin
for i:=0 to w do
f[0,i]:=0;
for i:=1 to m do
for j:=0 to w do begin
f[i,j]:=f[i-1,j];
if (j>=w) and (f[i-1,j-w]+v>f[i,j]) then
f[i,j]:=f[i-1,j-w]+v;
end;
writeln(f[m,wt]);
end;
由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。
事实上,由于我们定下的前提是:所有的结点都没有重叠。也就是说,任意N件物品的重量相加都不能相等,而所有物品的重量又都是整数,那末这个时候W的最小值是:1+2+2^2+2^3+……+2^n-1=2^n -1
此时n*w>2^n,动态规划比搜索还要慢~~|||||||所以,其实背包的总容量W和重叠的结点的个数是有关的。
考虑能不能不计算那些多余的结点……
优化时间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f[v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v-c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c]+w};
其中的f[v]=max{f[v],f[v-c]}一句恰就相当于我们的转移方程f[v]=max{f[v],f[v-c]},因为现在的f[v-c]就相当于原来的f[v-c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[v-c]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。
procere ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。
有了这个过程以后,01背包问题的伪代码就可以这样写:
for i=1..N
ZeroOnePack(c,w);
初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解

Ⅱ @回溯法求解0-1背包问题,TSP旅行商问题有妙招,从全排列说起

回溯法是一种解决问题的策略,尤其适用于像0-1背包问题和TSP旅行商问题这样的组合优化问题。让我们一步步来看。

首先,回溯法从探明问题的解空间开始。以全排列问题为例,对集合{1, 2, 3},我们通过枚举所有可能的排列组合,如从1开始,后续有{1, 2}和{1, 3}两种选择,继续递归下去,直到所有排列都被考虑。最终得到解空间:{{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}。

对于0-1背包问题,物品的选择形成一个决策树,每件物品的选择或不选择都构成一个可能的解。例如,6件物品的解空间可能包括{11, 10, 01, 00}等。通过递归地尝试所有组合,直到达到背包容量限制或所有物品都选择或不选择。

TSP旅行商问题则是寻找一个路径,让旅行商访问所有城市且仅一次,返回起点。比如从北京出发,计算北京到上海、合肥等城市的最短路线,形成一个完整的回溯搜索过程。

使用回溯法,我们可以设计算法来求解这些问题。对于每个问题,我们都会有一个判别函数来决定当前选择是否可行,然后迭代或回溯,直到找到最优解。通过编程实现,如Python代码,可以实际执行这些算法并得到结果。

总结一下,回溯法在0-1背包问题和TSP问题中,通过构建解空间、设计策略和执行搜索,帮助我们找到最优解。现在你了解了这种方法的基本原理和应用。

Ⅲ 计算机算法分析考试:动态规划0-1背包问题,怎么算

问题描述:
给定n种物品和一背包,物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品(物品不能分割),使得装入背包中物品的总价值最大?

抽象描述如下:
x[n]:表示物品的选择,x[i]=1表示选择放进物品i到背包中。

Ⅳ 用动态规划算法怎样求解01背包问题

动态规划主要解决的是多阶段的决策问题。

01背包中,状态为背包剩余的容量,阶段是每一个物品,决策是是否选择当前的物品。


所以用动态规划来解决是非常贴切的。

我们设f[V]表示已经使用容量为V时所能获得的最大价值,w[i]表示i物品的质量,c[i]表示i物品的价值。

for(inti=1;i<=n;i++)
for(intj=V;j>=w[i];j--)
f[j]=max(f[j],f[j-w[i]]+c[i]);

这便是所谓的一个状态转移方程。

f[j]表示在已经使用容量为j时的最大价值,f[j-w[i]]表示在已经使用容量为j-w[i]时的最大价值。

f[j]可以由f[j-w[i]]这个状态转移到达,表示选取w[i]这个物品,并从而获得价值为c[i]。

而每次f[j]会在选与不选中决策选出最优的方案。

从每一个物品,也就是每一个阶段的局部最优推出最后的全局最优值。这样就解决了01背包问题

Ⅳ 关于C++ 01背包问题

1.摘要

以背包问题为例,介绍了贪心法与动态规划的关系以及两个方案在解决背包问题上的比较。贪心法什么时候能取到最优界并无一般理论,但对于普通背包问题我们有一个完美的结果——贪心法可取到最优解。介绍了其它一些对背包问题的研究或者拓展。

2.介绍

贪心算法是我们在《算法设计技巧与分析》这门课中所学习到的几种重要的算法之一,顾名思义,贪心算法总是作出在当前看来最好的选择。也就是该算法并不从整体最优考虑,它所作出的选择只是在某种意义上的从局部的最优选择,寻找到解决问题的次优解的方法。虽然我们希望贪心算法得到的最终结果也是整体最优的,但是在某些情况下,该算法得到的只是问题的最优解的近似。

3.算法思想:

贪心法的基本思路:

——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。

该算法存在问题:

1.不能保证求得的最后解是最佳的;

2.不能用来求最大或最小解问题;

3.只能求满足某些约束条件的可行解的范围。

实现该算法的过程:

在约束下最大。

(2)动态规划解决方案:是解决0/1背包问题的最优解

(i)若i=0或j=0,V[i,j] = 0

(ii)若j<si, V[i,j] = V[i-1,j](仅用最优的方法,选取前i-1项物品装入体积为j的背包,因为第i项体积大于j,装不下这一项,所以背包里面的i-1项就达到最大值)

(iii)若i>0和j>=si, Max{V[i-1,j],V[i-1,j-si]+vi} (第一种情况是包中的i-1项已经达到最大值,第二种情况是i-1项占j-si的体积再加上第i项的总的价值,取这两种情况的最大值。)

//sj和vj分别为第j项物品的体积和价值,C是总体积限制。

//V[i,j]表示从前i项{u1,u2,…,un}中取出来的装入体积为j的背包的物品的最大//价值。[13]

(3)贪心算法解决背包问题有几种策略:

(i)一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。这种策略不能保证得到最优解。例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 105。当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。而最优解为[ 0 , 1 , 1 ],其总价值为3 0。

(ii)另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。考虑n= 2 ,w=[10,20], p=[5,100], c= 2 5。当利用重量贪婪策略时,获得的解为x =[1,0],比最优解[ 0 , 1 ]要差。

(iii)还有一种贪婪准则,就是我们教材上提到的,认为,每一项计算yi=vi/si,即该项值和大小的比,再按比值的降序来排序,从第一项开始装背包,然后是第二项,依次类推,尽可能的多放,直到装满背包。

有的参考资料也称为价值密度pi/wi贪婪算法。这种策略也不能保证得到最优解。利用此策略试解n= 3 ,w=[20,15,15], p=[40,25,25], c=30时的最优解。虽然按pi /wi非递(增)减的次序装入物品不能保证得到最优解,但它是一个直觉上近似的解。

而且这是解决普通背包问题的最优解,因为在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。

如图1,大体上说明了动态规划解决的0/1背包问题和贪心算法解决的问题之间的区别,

图1

(4)贪心算法解决背包问题的算法实现:

代码如下:

#include<iostream.h>
structgoodinfo
{
floatp;//物品效益
floatw;//物品重量
floatX;//物品该放的数量
intflag;//物品编号
};//物品信息结构体
voidInsertionsort(goodinfogoods[],intn)
{//插入排序,按pi/wi价值收益进行排序,一般教材上按冒泡排序
intj,i;
for(j=2;j<=n;j++)
{
goods[0]=goods[j];
i=j-1;
while(goods[0].p>goods[i].p)
{
goods[i+1]=goods[i];
i--;
}
goods[i+1]=goods[0];
}
}//按物品效益,重量比值做升序排列
voidbag(goodinfogoods[],floatM,intn)
{

floatcu;
inti,j;
for(i=1;i<=n;i++)
goods[i].X=0;
cu=M;//背包剩余容量
for(i=1;i<n;i++)
{
if(goods[i].w>cu)//当该物品重量大与剩余容量跳出
break;
goods[i].X=1;
cu=cu-goods[i].w;//确定背包新的剩余容量
}
if(i<=n)
goods[i].X=cu/goods[i].w;//该物品所要放的量
/*按物品编号做降序排列*/
for(j=2;j<=n;j++)
{
goods[0]=goods[j];
i=j-1;
while(goods[0].flag<goods[i].flag)
{
goods[i+1]=goods[i];
i--;
}
goods[i+1]=goods[0];
}
///////////////////////////////////////////
cout<<"最优解为:"<<endl;
for(i=1;i<=n;i++)
{
cout<<"第"<<i<<"件物品要放:";
cout<<goods[i].X<<endl;
}
}
voidmain()
{
cout<<"|--------运用贪心法解背包问题---------|"<<endl;
intj,n;floatM;
goodinfo*goods;//定义一个指针
while(j)
{
cout<<"请输入物品的总数量:";
cin>>n;
goods=newstructgoodinfo[n+1];//
cout<<"请输入背包的最大容量:";
cin>>M;
cout<<endl;
inti;
for(i=1;i<=n;i++)
{goods[i].flag=i;
cout<<"请输入第"<<i<<"件物品的重量:";
cin>>goods[i].w;
cout<<"请输入第"<<i<<"件物品的效益:";
cin>>goods[i].p;
goods[i].p=goods[i].p/goods[i].w;//得出物品的效益,重量比
cout<<endl;

}
Insertionsort(goods,n);
bag(goods,M,n);
cout<<"press<1>torunagian"<<endl;
cout<<"press<0>toexit"<<endl;
cin>>j;
}
}
阅读全文

与01背包问题的算法解决相关的资料

热点内容
灾难是命令 浏览:600
linux火狐浏览器安装 浏览:68
java子类重写 浏览:815
压缩袋太大装不进柜子怎么办 浏览:837
程序员简历里的职业 浏览:108
现在哪个app可以听付费歌曲 浏览:967
vivo的添加文件夹 浏览:351
ubuntu压缩zip 浏览:4
vigenere算法的方法是什么 浏览:668
pdf保护破解 浏览:345
仿微信聊天系统源码广州公司 浏览:106
怎么查看我的世界服务器日志 浏览:430
怎么从程序员走到成功 浏览:824
把软件放入文件夹中如何移出 浏览:209
红包源码企业即时聊天软件 浏览:581
xp安装python 浏览:10
西门子参数编程读取半径值 浏览:404
洗首饰解压小视频 浏览:967
01背包问题的算法解决 浏览:375
sd卡放哪个文件夹 浏览:302