① 九宫格的计算方法
计算方法就是:1至9九个数字,横竖都有3个格,思考怎么使每行、每列两个对角线上的三数之和都等于15。
在《射雕英雄传》中黄蓉曾破解九宫格,口诀:戴九履一,左三右七,二四有肩,八六为足,五居中央。“一居上行正中央,依次斜填切莫忘;上出框时向下放,右出框时向左放;排重便在下格填,右上排重一个样。” 不仅适用于九宫,也适用于推广的奇数九宫,如五五图,七七图等等。
(1)河图洛书众数和算法扩展阅读
九宫格游戏规则,1至9九个数字,横竖都有3个格,思考怎么使每行、每列两个对角线上的三数之和都等于15。这个游戏不仅仅考验人的数字推理能力,也同时考验了人的思维逻辑能力。
九宫格游戏对人们的思维锻炼有着极大的作用,从古时起人们便意识到九宫的教育意义。千百年来影响巨大,在文学、影视中都曾出现过。九宫格最早叫“洛书”,现在也叫“幻方” 。
起源于河图洛书,河图与洛书是中国古代流传下来的两幅神秘图案,历来被认为是河洛文化的滥觞,中华文明的源头,被誉为"宇宙魔方"。
后为《周易》来源。又相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮"洛书",献给大禹。大禹依此治水成功,遂划天下为九州。又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》。《易·系辞上》说:"河出图,洛出书,圣人则之",就是指这两件事。
② 河图洛书到底是真的还是杜撰的
河图洛书,是真正存在的,它的作者就是为百姓治水的大禹,河指的就是黄河,而洛就是指的是洛水,黄河的图和洛水的书,都是远古时期的圣人所做的,但是很遗憾的是这些图和书都没能流传到很久,就被毁坏了。河图洛书的核心就是八卦太极的,但是这之后,大禹为治水就将河图洛书做了一个整理,从而编撰出了《洪范》,后来这个就被收录进了《尚书》中。
河图洛书其实就是大禹智慧的一种解释说明,他通过改编,让河图洛书有了新的意义,而且也是为之前的河图洛书添加了很多新的元素,这就是河图洛书,一个凝结了大禹智慧的书籍,可能是远古时代,人类的智慧也没有被完全开发吧,大禹治水成功,解救了很多百姓。
③ “河图洛书”是什么东西,神奇的乘法循环现象是怎么样的
根据资料记载,河图洛书,传说是中国远古时代流传下来的两幅神秘图案。“河图”是上古伏羲时,一尊叫作“龙马”的神兽从黄河里驮出来的,伏羲据此画出了八卦;而“洛书”则是大禹时,一只从洛河里浮出的神龟背上的图案,大禹据此作出了《洪范》九畴。因此,河图洛书被认为蕴含了天地之理,是中华文明的源头之一。有人简单的说,河图洛书就和元素周期表差不多,有着它的规律。也许就是这样才有了乘法循环表。
经过这样的循环,就会得到一个规律,“从某数出发,以该数为乘数,相乘所得之积(若不是个位数,则仅取个位数)再乘以该数;所得之积(仅取个位数)再乘以该数……如此继续下去,就一定会回到该数。有的是原地循环,有的是在两数间来回循环,有的则是经过四步又回到原地。”这是在一篇文章中看到的。就是这样,有兴趣的可以多探究这个数理。
④ 谁知道洛书河图的正确图与算法
河图与洛书是中国古代流传下来的两幅神秘图案,历来被认为是河洛文化的滥觞,中华文明的源头,被誉为"宇宙魔方"。相传,上古伏羲氏时,洛阳东北孟津县境内的黄河中浮出龙马,背负"河图",献给伏羲。伏羲依此而演成八卦,后为《周易》来源。又相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮"洛书",献给大禹。大禹依此治水成功,遂划天下为九州。又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》。《易·系辞上》说:"河出图,洛出书,圣人则之",就是指这两件事。河图上,排列成数阵的黑点和白点,蕴藏着无穷的奥秘;洛书上,纵、横、斜三条线上的三个数字,其和皆等于15,十分奇妙。对此,中外学者作了长期的探索研究,认为这是中国先民心灵思维的结晶,是中国古代文明的第一个里程碑。《周易》和《洪范》两书,在中华文化发展史上有着重要的地位,在哲学、政治学、军事学、伦理学、美学、文学诸领域产生了深远影响。作为中国历史文化渊源的河图洛书,功不可没。
河图洛书是中华文化,阴阳五行术数之源。最早记录在《尚书》之中,其次在《易传》之中,诸子百家多有记述。太极、八卦、周易、六甲、九星、风水、等等皆可追源至此。1987年河南濮阳西水坡出土的形意墓,距今约6500多年。墓中用贝壳摆绘的青龙、白虎图象栩栩如生,与近代几无差别。河图四象、28宿俱全。其布置形意,上合天星,下合地理,且埋葬时已知必被发掘。同年出土的安徽含山龟腹玉片,则为洛书图象,距今约5000多年。可知那时人们已精通天地物理,河图、洛书之数了。据专家考证,形意墓中之星象图可上合二万五千年前。这说明邵庸等先哲认为“河图、洛书乃上古星图”,其言不虚。
⑤ 数学的起源和演变谁知道哦
非洲东北部的尼罗河流域,孕育了埃及的文化。在公元前3500~3000年间,这里曾建立了一个统一的帝国。
目前我们对古埃及数学的认识,主要源于两份用僧侣文写成的纸草书,其一是成书于公元前1850年左右的莫斯科纸草书,另一份是约成书于公元前1650年的兰德(Rhind)纸草书,又称阿梅斯(Ahmes)纸草书。阿梅斯纸草书的内容相当丰富,讲述了埃及的乘法和除法、单位分数的用法、试位法、求圆面积问题的解和数学在许多实际问题中的应用。
古埃及人使用象形文字,其数字以十进制表示,但并非位值制,而分数还有一套专门的记法。由埃及数系建立起来的算术具有加法特征,其乘、除法的计算也只是利用连续加倍的方法来完成。古埃及人将所有的分数都化成单位分数(分子为 1的分数之和),在阿梅斯纸草书中,有很大一张分数表,把2/(2n+1)状分数表示成单位分数之和,如:2/5=1/3+1/15,2/7=1/4+1/28,…,2/97=1/56+1/679+
1/776,等等。
古埃及人已经能解决一些属于一次方程和最简单的二次方程的问题,还有一些关于等差数列、等比数列的初步知识。
如果说巴比伦人发展了卓越的算术和代数学,那么在另一方面,人们一般认为埃及人在几何学方面要胜过巴比伦人。一种观点认为尼罗河水每年一次的定期泛滥,淹没河流两岸的谷地。大水过后,法老要重新分配土地,长期积累起来的土地测量知识逐渐发展为几何学。
埃及人能够计算简单平面图形的面积,计算出的圆周率为 3.16049;他们还知道如何计算棱椎、圆椎、圆柱体及半球的体积。其中最惊人的成就在于方棱椎平头截体体积的计算,他们给出的计算过程与现代的公式相符。
至于在建造金字塔和神殿过程中,大量运用数学知识的事实表明,埃及人已积累了许多实用知识,而有待于上升为系统的理论。
返回
--------------------------------------------------------------------------------
印度数学(Hin mathematics)
印度是世界上文化发达最早的地区之一,印度数学的起源和其它古老民族的数学起源一样,是在生产实际需要的基础上产生 的。但是,印度数学的发展也有一个特殊的因素,便是它的数学和历法一样,是在婆罗门祭礼的影响下得以充分发展的。再加上 佛教的交流和贸易的往来,印度数学和近东,特别是中国的数学便在互相融合,互相促进中前进。另外,印度数学的发展始终与天文学有密切的关系,数学作品大多刊载于天文学着作中的某些篇章。
《绳法经》属于古代婆罗门教的经典,可能成书于公元前6世纪,是在数学史上有意义的宗教作品,其中讲到拉绳设计祭坛时所体现到的几何法则,并广泛地应用了勾股定理。
此后约1000年之中,由于缺少可靠的史料,数学的发展所知甚少。
公元5-12世纪是印度数学的迅速发展时期,其成就在世界数学史上占有重要地位。在这个时期出现了一些着名的学者,如6世纪的阿利耶波多(第一)( ryabhata),着有《阿利耶波多历数书》;7世纪的婆罗摩笈多(Brahmagupta ),着有《婆罗摩笈多修订体系》(Brahma-sphuta-sidd'h nta ),在这本天文学着作中,包括“算术讲义”和“不定方程讲义 ”等数学章节;9世纪摩诃毗罗(Mah vira );12世纪的婆什迦罗(第二)(Bh skara ),着有《天文系统极致》(Siddh nta iromani ),有关数学的重要部份为《丽罗娃提》(Lil vati) )和《算法本源》(V jaganita)等等。
在印度,整数的十进制值制记数法产生于6世纪以前,用9个数字和表示零的小圆圈,再借助于位值制便可写出任何数字。他们由此建立了算术运算,包括整数和分数的四则运算法则;开平方和开立方的法则等。对于“零”,他们不单是把它看成“一无所有”或空位,还把它当作一个数来参加运算,这是印度算术的一大贡献。
印度人创造的这套数字和位值记数法在8世纪传入伊斯兰世界,被阿拉伯人采用并改进。13世纪初经斐波纳契的《算盘书》 流传到欧洲,逐渐演变成今天广为利用的1,2,3,4,…,等等,称为印度-阿拉伯数码。
印度对代数学做过重大的贡献。他们用符号进行代数运算,并用缩写文字表示未知数。他们承认负数和无理数,对负数的四 则运算法则有具体的描述,并意识到具有实解的二次方程有两种形式的根。印度人在不定分析中显示出卓越的能力,他们不满足于对一个不定方程只求任何一个有理解,而致力于求所有可能的整数解。印度人还计算过算术级数和几何级数的和,解决过单利 与复利、折扣以及合股之类的商业问题。
印度人的几何学是凭经验的,他们不追求逻辑上严谨的证明,只注重发展实用的方法,一般与测量相联系,侧重于面积、体积的计算。其贡献远远比不上他们在算术和代数方面的贡献大。在三角学方面,印度人用半弦(即正弦)代替了希腊人的全弦, 制作正弦表,还证明了一些简单的三角恒等式等等。他们在三角学所做的研究是十分重要的。
返回
--------------------------------------------------------------------------------
阿拉伯数学[Arabic mathematics]
从九世纪开始,数学发展的中心转向阿拉伯和中亚细亚。
自从公元七世纪初伊斯兰教创立后,很快形成了强大的势力,迅速扩展到阿拉伯半岛以外的广大地区,跨越欧、亚、非三大洲。在这一广大地区内,阿拉伯文是通用的官方文字,这里所叙述的阿拉伯数学,就是指用阿拉伯语研究的数学。
从八世纪起大约有一个到一个半世纪是阿拉伯数学的翻译时期,巴格达成为学术中心,建有科学宫、观象台、图书馆和一个学院。来自各地的学者把希腊、印度和波斯的古典着作大量地译为阿拉伯文。在翻译过程中,许多文献被重新校订、考证和增补,大量的古代数学遗产获得了新生。阿拉伯文明和文化在接受外来文化的基础上,迅速发展起来,直到15世纪还充满活力。
花拉子米[Al-khowarizmi]是阿拉伯初期最主要的数学家,他编写了第一本用阿拉伯语在伊斯兰世界介绍印度数字和记数法的着作。公元十二世纪后,印度数字、十进制值制记数法开始传入欧洲,又经过几百年的改革,这种数字成为我们今天使用的印度—阿拉伯数码。花拉子米的另一名着《ilm al-jabr wa'lmugabalah》[《代数学》]系统地讨论了一元二次方程的解法,该种方程的求根公式便是在此书中第一次出现。现代”algebra”[代数学]一词亦源于书名中出现的”al jabr”。
三角学在阿拉伯数学中占有重要地位,它的产生与发展和天文学有密切关系。阿拉伯人在印度人和希腊人工作的基础上发展了三角学。他们引进了几种新的三角量,揭示了它们的性质和关系,建立了一些重要的三角恒等式。给出了球面三角形和平面三角形的全部解法,制造了许多较精密的三角函数表。其中着名的数学家有:阿尔.巴塔尼[Al-Battani]、阿卜尔.维法[Abu'l-Wefa]、阿尔.比鲁尼[Al-Beruni]等。系统而完整地论述三角学的着作是由十三世纪的学者纳西尔丁[Nasir ed-din]完成的,该着作使三角学脱离天文学而成为数学的独立分支,对三角学在欧洲的发展有很大的影响。
在近似计算方面,十五世纪的阿尔.卡西[Al-kashi]在他的《圆周论》中,叙述了圆周率π的计算方法,并得到精确到小数点后16位的圆周率,从而打破祖冲之保持了一千年的记录。此外,阿尔.卡西在小数方面做过重要工作,亦是我们所知道的以“帕斯卡三角形”形式处理二项式定理的第一位阿拉伯学者。
阿拉伯几何学的成就低于代数和三角。希腊几何学严密的逻辑论证没有被阿拉伯人接受。
总的来看,阿拉伯数学较缺少创造性,但当时世界上大多数地方正处于科学上的贫瘠时期,其成绩相对显得较大,值得赞美的是他们充当了世界上大量精神财富的保存者,在黑暗时代过去后,这些精神财富才传回欧洲。欧洲人主要就是通过他们的译着才了解古希腊和印度以及中国数学的成就。
返回
--------------------------------------------------------------------------------
日本数学[Mathematics in Japan]
人类从何时才开始定居于日本列岛,至今仍无定论。公元四世纪中叶,日本建立了第一个统一的国家。在十世纪以前,日本主要吸收外来的文化。中国、朝鲜和印度的文化对日本都有很大的影响,十世纪以后,真正的日本文化才发展起来。日本数学的繁荣则更晚,是十七世纪以后的事。
日本人把受西方数学影响以前,按自己的特点发展起来的数学叫和算,也算日本传统数学。十七世纪后期至十九世纪中叶是和算的兴盛时期。 和算在中国古代数学的影响下发展起来。公元六世纪始,中国的历法和数学就直接或间接地[通过朝鲜]传入日本,日本政府亦多次派留学生到中国唐朝学习数学。到八世纪初,日本已仿照隋唐时期的数学教育制度设立算学博士并采用《周髀算经》、《九章算术》、《孙子算经》、《缀术》等中国古算书作为教材,这是中国数学输入日本的第一个时期。
十三至十七世纪,是中国数学传入日本的第二个时期,《杨辉算法》、《算学启蒙》、《算法统宗》等陆续传入日本,对日本数学的发展有重要的影响。吉田光由的《尘劫记》[1627]使珠算术在日本迅速得到普及,其内容与《算法统宗》极为相似,只是其中许多例题是根据日本的实际情况编写的。这时期还有几本着作是专门介绍和解释《算学启蒙》的。 十七世纪初,日本数学家开始写出自己的着作,如毛利重能的《割算书》[1622]、今村知商的《竖亥录》[1639]等。到十七世纪末期,通过关孝和等人的工作,逐渐形成了日本数学体系——和算。
关孝和在日本被尊为“算圣”,十七世纪末到十八世纪初,以他为核心形成一个学派[关流],这一学派的主要成就是“点 术”和“圆理”。“点 术”是把由中国传入的天文术改为笔算,并改进了算式的记法,是和算特有的笔算代数学。“圆理”可看作是和算特有的数学分析。建部贤弘求得弧长的无穷级数表达式,又称圆理公式。久留岛义太推广了圆理公式,发展了圆理的极数术[极值问题],并在西方数学家之前发现了欧拉函数和行列式展开定理。关氏学派的第四代大师安岛直圆深入到微积分领域,提出一种求弧长的方法;又将此法推广,形成二重积分,求出了两相交圆柱公共部份的体积。晚期的关氏学派数学家和田宁进一步改进了圆理,使计算弧长、面积、体积等问题更加简化,他使用的方法和现在积分法的原理相近。
除了关氏学派外,还有一些较小的学派。他们总结了和算中的各种几何问题;深入研究了计算椭圆、球面等面积和体积的公式;探讨了代数方程理论等等。 十九世纪中叶,日本政府采取了开国政策,西方数学大量传入。明治维新时期,日本政府实行“和算废止,洋算专用”政策,和算迅速衰废[只有珠算沿用至今],同时开始了近代数学的研究。时至今日,日本已步入世界上数学研究先进国家的行列。