导航:首页 > 源码编译 > mapreduce聚类算法

mapreduce聚类算法

发布时间:2022-07-29 08:48:05

1. 我也已经25岁其实就有转行的打算了,想转数据分析大数据行业,我大学本科是和这个专业相关的,

来得及就赶紧哦
首先,大数据行业的入行门槛至少是大专及以上学历,按照大多数人受教育的年纪来说,大专毕业至少21+,本科生至少22+,研究生以上学历年龄会更大,不少人的职业生涯是从本科或研究生起步的,那样少说也得二十四五了
现今大数据人才的来源主要靠市场培训,市场上的大数据培训以技术入门为主,不少人是程序员转行做大数据的,大多数程序员是大专及本科毕业后入职,经过几年职场历练后,程序员在工作中不仅对业务知识有一定积累,且对IT行业也有自己的积累和理解,这样意味这部分人进入大数据市场有先发优势,同时意味着他们年纪也应该在25岁+

2. 基于hadoop的聚类分析怎么实现

传统聚类算法本身的特点,并且结合MapRece的编程模式,使得开发人员不需过多了解并行化的具体通信实现,就可以实现聚类算法的快速并行化,高效而且容易实现。 本文对传统的各种聚类算法进行了比较,针对传统的K-means算法在初始聚类中心选择的随机性以及聚类结果的局部最优性进行了适当的改进,并将改进结果结合Hadoop框架进一步应用到实际项目中的相

3. 大数据专业主要学什么啊

1、大数据专业,一般是指大数据采集与管理专业;
2、课程设置,大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。
3、核心技术,
(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Maprece、分布式数据库HBase、分布式数据仓库Hive。
(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。
(3)分布式数据处理。详细介绍分析Map/Rece计算模型和Hadoop Map/Rece技术的原理与应用。
(4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。
(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。
(6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。
(7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。
4、行业现状,
今天,越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如网络、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。
在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。

4. 你好,关于KNN算法的maprece化

==================cluster.txt===========================
A 2 2
B 2 4
C 4 2
D 4 4
E 6 6
F 6 8
G 8 6
H 8 8
==================cluster.center.conf===========================
K1 3 2
K2 6 2
====================================================================================
package com.mahout.cluster;
//二维坐标的点
public class DmRecord {
private String name;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
private double xpodouble;
private double ypodouble;

public DmRecord(){

}

public DmRecord(String name,double x,double y){
this.name = name;
this.xpodouble = x;
this.ypodouble = y;
}
public double getXpoint() {
return xpodouble;
}
public void setXpoint(double xpodouble) {
this.xpodouble = xpodouble;
}
public double getYpoint() {
return ypodouble;
}
public void setYpoint(double ypodouble) {
this.ypodouble = ypodouble;
}

public double distance(DmRecord record){
return Math.sqrt(Math.pow(this.xpodouble-record.xpodouble, 2)+Math.pow(this.ypodouble-record.ypodouble, 2));
}
}
==============================================================================
package com.mahout.cluster;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map;
import org.apache.hadoop.io.IOUtils;
public class DmRecordParser {
private Map<String,DmRecord> urlMap = new HashMap<String,DmRecord>();

/**
* 读取配置文件记录,生成对象
*/
public void initialize(File file) throws IOException {
BufferedReader in = null;
try {
in = new BufferedReader(new InputStreamReader(new FileInputStream(file)));
String line;
while ((line = in.readLine()) != null) {
String [] strKey = line.split("\t");
urlMap.put(strKey[0],parse(line));
}
} finally {
IOUtils.closeStream(in);
}
}

/**
* 生成坐标对象
*/
public DmRecord parse(String line){
String [] strPlate = line.split("\t");
DmRecord Dmurl = new DmRecord(strPlate[0],Integer.parseInt(strPlate[1]),Integer.parseInt(strPlate[2]));
return Dmurl;
}

/**
* 获取分类中心坐标
*/
public DmRecord getUrlCode(String cluster){
DmRecord returnCode = null;
DmRecord dmUrl = (DmRecord)urlMap.get(cluster);
if(dmUrl == null){
//35 6
returnCode = null;
}else{
returnCode =dmUrl;
}
return returnCode;
}
}
==============================================================================
package com.mahout.cluster;
import java.io.File;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Recer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import com.mahout.test.StringStringPairAsce;
public class Kmeans extends Configured implements Tool {
public static class KmeansMapper extends MapReceBase implements
Mapper<LongWritable, Text, Text, Text> {
private DmRecordParser drp ;
private String clusterNode = "K";
private DmRecord record0 = null;
private DmRecord record1 = new DmRecord();
private double Min_distance = 9999;
private int tmpK = 0;
private Text tKey = new Text();
private Text tValue = new Text();

//获取聚类中心坐标
@Override
public void configure(JobConf conf) {
drp = new DmRecordParser();
try {
drp.initialize(new File("cluster.center.conf"));
} catch (IOException e) {
throw new RuntimeException(e);
}
}

//根据聚类坐标,把文件中的点进行类别划分
@Override
public void map(LongWritable key, Text value,
OutputCollector<Text, Text> output, Reporter arg3)
throws IOException {
String [] strArr = value.toString().split("\t");

for(int i=1; i <= 2; i++){
record0 = drp.getUrlCode("K"+i);
record1.setName(strArr[0]);
record1.setXpoint(Double.parseDouble(strArr[1]));
record1.setXpoint(Integer.parseInt(strArr[2]));

if(record0.distance(record1) < Min_distance){
tmpK = i;
Min_distance = record0.distance(record1);
}
}

tKey.set("C"+tmpK);
output.collect(tKey, value);
}
}

//计算新的聚类中心
public static class KmeansRecer extends MapReceBase implements
Recer<Text, Text, Text, Text> {
private Text tKey = new Text();
private Text tValue = new Text();

@Override
public void rece(Text key, Iterator<Text> value,
OutputCollector<Text, Text> output, Reporter arg3)
throws IOException {
double avgX=0;
double avgY=0;
double sumX=0;
double sumY=0;
int count=0;
String [] strValue = null;

while(value.hasNext()){
count++;
strValue = value.next().toString().split("\t");
sumX = sumX + Integer.parseInt(strValue[1]);
sumY = sumY + Integer.parseInt(strValue[1]);
}

avgX = sumX/count;
avgY = sumY/count;
tKey.set("K"+key.toString().substring(1,2));
tValue.set(avgX + "\t" + avgY);
System.out.println("K"+key.toString().substring(1,2)+"\t"+avgX + "\t" + avgY);
output.collect(tKey, tValue);
}
}

@Override
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), Kmeans.class);
conf.setJobName("Kmeans");
//conf.setNumMapTasks(200);
// 设置Map输出的key和value的类型
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(Text.class);
// 设置Rece输出的key和value的类型
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
// 设置Mapper和Recer
conf.setMapperClass(KmeansMapper.class);
conf.setRecerClass(KmeansRecer.class);

conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
// 设置输入输出目录
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new Kmeans(), args);
System.exit(exitCode);
}
}

5. hadoop生态圈中的框架不包括什么

Hadoop 生态圈中的框架包括以下主要组件,除了以下组件之外的都不属于Hadoop 生态圈。

1)HDFS:一个提供高可用的获取应用数据的分布式文件系统。

2)MapRece:一个并行处理大数据集的编程模型。

3)HBase:一个可扩展的分布式数据库,支持大表的结构化数据存储。是一个建立在 HDFS 之上的,面向列的 NoSQL 数据库,用于快速读/写大量数据。

4)Hive:一个建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具;可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许不熟悉 MapRece 的开发人员也能编写数据查询语句,然后这些语句被翻译为 Hadoop 上面的 MapRece 任务。

5)Mahout:可扩展的机器学习和数据挖掘库。它提供的 MapRece 包含很多实现方法,包括聚类算法、回归测试、统计建模。

6)Pig:一个支持并行计算的高级的数据流语言和执行框架。它是 MapRece 编程的复杂性的抽象。Pig 平台包括运行环境和用于分析 Hadoop 数据集的脚本语言(PigLatin)。其编译器将 PigLatin 翻译成 MapRece 程序序列。

7)Zookeeper:—个应用于分布式应用的高性能的协调服务。它是一个为分布式应用提供一致性服务的软件,提供的功能包括配置维护、域名服务、分布式同步、组服务等。

8)Amban:一个基于 Web 的工具,用来供应、管理和监测 Hadoop 集群,包括支持 HDFS、MapReceAHive、HCatalog、HBase、ZooKeeperAOozie、Pig 和 Sqoop 。Ambari 也提供了一个可视的仪表盘来查看集群的健康状态,并且能够使用户可视化地查看 MapRece、Pig 和 Hive 应用来诊断其性能特征。

9)Sqoop:一个连接工具,用于在关系数据库、数据仓库和 Hadoop 之间转移数据。Sqoop 利用数据库技术描述架构,进行数据的导入/导出;利用 MapRece 实现并行化运行和容错技术。

10)Flume:提供了分布式、可靠、高效的服务,用于收集、汇总大数据,并将单台计算机的大量数据转移到 HDFS。它基于一个简单而灵活的架构,并提供了数据流的流。它利用简单的可扩展的数据模型,将企业中多台计算机上的数据转移到 Hadoop。

6. 如何利用Mahout和Hadoop处理大规模数据

利用Mahout和Hadoop处理大规模数据
规模问题在机器学习算法中有什么现实意义?让我们考虑你可能需要部署Mahout来解决的几个问题的大小。
据粗略估计,Picasa三年前就拥有了5亿张照片。 这意味着每天有百万级的新照片需要处理。一张照片的分析本身不是一个大问题,即使重复几百万次也不算什么。但是在学习阶段可能需要同时获取数十亿张照片中的信息,而这种规模的计算是无法用单机实现的。
据报道,Google News每天都会处理大约350万篇新的新闻文章。虽然它的绝对词项数量看似不大,但试想一下,为了及时提供这些文章,它们连同其他近期的文章必须在几分钟的时间内完成聚类。
Netflix为Netflix Prize公布的评分数据子集中包含了1亿个评分。因为这仅仅是针对竞赛而公布的数据,据推测Netflix为形成推荐结果所需处理的数据总量与之相比还要大出许多倍。
机器学习技术必须部署在诸如此类的应用场景中,通常输入数据量都非常庞大,以至于无法在一台计算机上完全处理,即使这台计算机非常强大。如果没有 Mahout这类的实现手段,这将是一项无法完成的任务。这就是Mahout将可扩展性视为重中之重的道理,以及本书将焦点放在有效处理大数据集上的原因,这一点与其他书有所不同。
将复杂的机器学习技术应用于解决大规模的问题,目前仅为大型的高新技术公司所考虑。但是,今天的计算能力与以往相比,已廉价许多,且可以借助于 Apache Hadoop这种开源框架更轻松地获取。Mahout通过提供构筑在Hadoop平台上的、能够解决大规模问题的高质量的开源实现以期完成这块拼图,并可为所有技术团体所用。
Mahout中的有些部分利用了Hadoop,其中包含一个流行的MapRece分布式计算框架。MapRece被谷歌在公司内部得到广泛使用 ,而Hadoop是它的一个基于Java的开源实现。MapRece是一个编程范式,初看起来奇怪,或者说简单得让人很难相信其强大性。 MapRece范式适用于解决输入为一组"键 值对"的问题,map函数将这些键值对转换为另一组中间键值对,rece函数按某种方式将每个中间键所对应的全部值进行合并,以产生输出。实际上,许多问题可以归结为MapRece问题,或它们的级联。这个范式还相当易于并行化:所有处理都是独立的,因此可以分布到许多机器上。这里不再赘述 MapRece,建议读者参考一些入门教程来了解它,如Hadoop所提供的
Hadoop实现了MapRece范式,即便MapRece听上去如此简单,这仍然称得上是一大进步。它负责管理输入数据、中间键值对以及输出数据的存储;这些数据可能会非常庞大,并且必须可被许多工作节点访问,而不仅仅存放在某个节点上。Hadoop还负责工作节点之间的数据分区和传输,以及各个机器的故障监测与恢复。理解其背后的工作原理,可以帮你准备好应对使用Hadoop可能会面对的复杂情况。Hadoop不仅仅是一个可在工程中添加的库。它有几个组件,每个都带有许多库,还有(几个)独立的服务进程,可在多台机器上运行。基于Hadoop的操作过程并不简单,但是投资一个可扩展、分布式的实现,可以在以后获得回报:你的数据可能会很快增长到很大的规模,而这种可扩展的实现让你的应用不会落伍。
鉴于这种需要大量计算能力的复杂框架正变得越来越普遍,云计算提供商开始提供Hadoop相关的服务就不足为奇了。例如,亚马逊提供了一种管理Hadoop集群的服务 Elastic MapRece,该服务提供了强大的计算能力,并使我们可通过一个友好的接口在Hadoop上操作和监控大规模作业,而这原本是一个非常复杂的任务。

7. 发现公司里的大数据开发挣得很多,想转行,

转行这个词汇,一直是职场上此起彼伏的一个热门话题,相信很多朋友都想过或已经经历过转行。工作可谓是我们生存乃至生活的主要收入来源,谁都希望拥有一份高薪又稳定的工作,以此来改善自己的生活和实现自己的大大小小的梦想!但又担心转行后的工作待遇达不到自己的预期,顾虑重重……

不少想进入大数据分析行业的零基础学员经常会有这样一些疑问:大数据分析零基础应该怎么学习?自己适合学习大数据分析吗?人生,就是在不断地做选择,然后在这个选择过程中成长,让自己从一棵小树苗变成参天大树。就是我们每个对大数据充满幻想终于下定决心行动的学员的选择,我们给了自己4个月的时间,想要在大数据分析这个领域汲取养分,让自己壮大成长。

【明确方向】

通过国家的战略规划,看到BAT的大牛们都在大数据行业布局,新闻媒体追捧这大数据分析行业的项目和热点,我想如果我还没有能力独立判断的时候,跟着国家政策和互联网大佬们的步调走,这应该是错不了的。

【付诸行动】

明确了方向之后,我就整装待发,刚开始是在网络上购买了很多的视频教程,也买了很多书籍,但是最大的问题就在于,我不知道怎么入手,没关系,有信心有耐心肯定能战胜困难,我坚持了一个月,学习的节奏越来越乱,陆陆续续出现了很多的问题,没人指导,请教了几个业内的朋友,但对方工作繁忙,问了几次之后就不好意思了,自学陷入了死循环。

意识到我学习效率的低下,以及无人指导的问题想想未来的康庄大道,咬咬牙告诉自己,一定好好好学,不然就浪费太多时间最后还会是一无所获。最后找到组织(AAA教育)一起学习进步!

大数据分析零基础学习路线,有信心能坚持学习的话,那就当下开始行动吧!

一、大数据技术基础

1、linux操作基础

linux系统简介与安装

linux常用命令–文件操作

linux常用命令–用户管理与权限

linux常用命令–系统管理

linux常用命令–免密登陆配置与网络管理

linux上常用软件安装

linux本地yum源配置及yum软件安装

linux防火墙配置

linux高级文本处理命令cut、sed、awk

linux定时任务crontab

2、shell编程

shell编程–基本语法

shell编程–流程控制

shell编程–函数

shell编程–综合案例–自动化部署脚本

3、内存数据库redis

redis和nosql简介

redis客户端连接

redis的string类型数据结构操作及应用-对象缓存

redis的list类型数据结构操作及应用案例-任务调度队列

redis的hash及set数据结构操作及应用案例-购物车

redis的sortedset数据结构操作及应用案例-排行榜

4、布式协调服务zookeeper

zookeeper简介及应用场景

zookeeper集群安装部署

zookeeper的数据节点与命令行操作

zookeeper的java客户端基本操作及事件监听

zookeeper核心机制及数据节点

zookeeper应用案例–分布式共享资源锁

zookeeper应用案例–服务器上下线动态感知

zookeeper的数据一致性原理及leader选举机制

5、java高级特性增强

Java多线程基本知识

Java同步关键词详解

java并发包线程池及在开源软件中的应用

Java并发包消息队里及在开源软件中的应用

Java JMS技术

Java动态代理反射

6、轻量级RPC框架开发

RPC原理学习

Nio原理学习

Netty常用API学习

轻量级RPC框架需求分析及原理分析

轻量级RPC框架开发

二、离线计算系统

1、hadoop快速入门

hadoop背景介绍

分布式系统概述

离线数据分析流程介绍

集群搭建

集群使用初步

2、HDFS增强

HDFS的概念和特性

HDFS的shell(命令行客户端)操作

HDFS的工作机制

NAMENODE的工作机制

java的api操作

案例1:开发shell采集脚本

3、MAPREDUCE详解

自定义hadoop的RPC框架

Maprece编程规范及示例编写

Maprece程序运行模式及debug方法

maprece程序运行模式的内在机理

maprece运算框架的主体工作流程

自定义对象的序列化方法

MapRece编程案例

4、MAPREDUCE增强

Maprece排序

自定义partitioner

Maprece的combiner

maprece工作机制详解

5、MAPREDUCE实战

maptask并行度机制-文件切片

maptask并行度设置

倒排索引

共同好友

6、federation介绍和hive使用

Hadoop的HA机制

HA集群的安装部署

集群运维测试之Datanode动态上下线

集群运维测试之Namenode状态切换管理

集群运维测试之数据块的balance

HA下HDFS-API变化

hive简介

hive架构

hive安装部署

hvie初使用

7、hive增强和flume介绍

HQL-DDL基本语法

HQL-DML基本语法

HIVE的join

HIVE 参数配置

HIVE 自定义函数和Transform

HIVE 执行HQL的实例分析

HIVE最佳实践注意点

HIVE优化策略

HIVE实战案例

Flume介绍

Flume的安装部署

案例:采集目录到HDFS

案例:采集文件到HDFS

三、流式计算

1、Storm从入门到精通

Storm是什么

Storm架构分析

Storm架构分析

Storm编程模型、Tuple源码、并发度分析

Storm WordCount案例及常用Api分析

Storm集群部署实战

Storm+Kafka+Redis业务指标计算

Storm源码下载编译

Strom集群启动及源码分析

Storm任务提交及源码分析

Storm数据发送流程分析

Storm通信机制分析

Storm消息容错机制及源码分析

Storm多stream项目分析

编写自己的流式任务执行框架

2、Storm上下游及架构集成

消息队列是什么

Kakfa核心组件

Kafka集群部署实战及常用命令

Kafka配置文件梳理

Kakfa JavaApi学习

Kafka文件存储机制分析

Redis基础及单机环境部署

Redis数据结构及典型案例

Flume快速入门

Flume+Kafka+Storm+Redis整合

四、内存计算体系Spark

1、scala编程

scala编程介绍

scala相关软件安装

scala基础语法

scala方法和函数

scala函数式编程特点

scala数组和集合

scala编程练习(单机版WordCount)

scala面向对象

scala模式匹配

actor编程介绍

option和偏函数

实战:actor的并发WordCount

柯里化

隐式转换

2、AKKA与RPC

Akka并发编程框架

实战:RPC编程实战

3、Spark快速入门

spark介绍

spark环境搭建

RDD简介

RDD的转换和动作

实战:RDD综合练习

RDD高级算子

自定义Partitioner

实战:网站访问次数

广播变量

实战:根据IP计算归属地

自定义排序

利用JDBC RDD实现数据导入导出

WorldCount执行流程详解

4、RDD详解

RDD依赖关系

RDD缓存机制

RDD的Checkpoint检查点机制

Spark任务执行过程分析

RDD的Stage划分

5、Spark-Sql应用

Spark-SQL

Spark结合Hive

DataFrame

实战:Spark-SQL和DataFrame案例

6、SparkStreaming应用实战

Spark-Streaming简介

Spark-Streaming编程

实战:StageFulWordCount

Flume结合Spark Streaming

Kafka结合Spark Streaming

窗口函数

ELK技术栈介绍

ElasticSearch安装和使用

Storm架构分析

Storm编程模型、Tuple源码、并发度分析

Storm WordCount案例及常用Api分析

7、Spark核心源码解析

Spark源码编译

Spark远程debug

Spark任务提交行流程源码分析

Spark通信流程源码分析

SparkContext创建过程源码分析

DriverActor和ClientActor通信过程源码分析

Worker启动Executor过程源码分析

Executor向DriverActor注册过程源码分析

Executor向Driver注册过程源码分析

DAGScheler和TaskScheler源码分析

Shuffle过程源码分析

Task执行过程源码分析

五、机器学习算法

1、python及numpy库

机器学习简介

机器学习与python

python语言–快速入门

python语言–数据类型详解

python语言–流程控制语句

python语言–函数使用

python语言–模块和包

phthon语言–面向对象

python机器学习算法库–numpy

机器学习必备数学知识–概率论

2、常用算法实现

knn分类算法–算法原理

knn分类算法–代码实现

knn分类算法–手写字识别案例

lineage回归分类算法–算法原理

lineage回归分类算法–算法实现及demo

朴素贝叶斯分类算法–算法原理

朴素贝叶斯分类算法–算法实现

朴素贝叶斯分类算法–垃圾邮件识别应用案例

kmeans聚类算法–算法原理

kmeans聚类算法–算法实现

kmeans聚类算法–地理位置聚类应用

决策树分类算法–算法原理

决策树分类算法–算法实现

时下的大数据分析时代与人工智能热潮,相信有许多对大数据分析师非常感兴趣、跃跃欲试想着转行的朋友,但面向整个社会,最不缺的其实就是人才,对于是否转行大数据分析行列,对于能否勇敢一次跳出自己的舒适圈,不少人还是踌躇满志啊!毕竟好多决定,一旦做出了就很难再回头了。不过如果你已经转行到大数据分析领域,就不要后悔,做到如何脱颖而出才是关键。因此本文给出一些建议,针对想要转行大数据分析行列且是零基础转行的小伙伴们,希望对你们有所裨益,也希望你们将来学有所成,不后悔,更不灰心!

相关推荐:

《转行大数据分析师后悔了》、《ui设计培训四个月骗局大爆料》、《零基础学大数据分析现实吗》、《大数据分析十八般工具》

8. 如何用maprece分布式实现k-means聚类算法

用spark做kmeans算法的例子,里边导入的数据总是有sample_linear_regression_data.txt sample_svm_data。
-

9. 女生学习大数据专业前景如何

不错,大数据是一个正在发展的专业。

越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如网络、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。

在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。

核心技术

(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Maprece、分布式数据库HBase、分布式数据仓库Hive。

(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。

(3)分布式数据处理。详细介绍分析Map/Rece计算模型和Hadoop Map/Rece技术的原理与应用。

(4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。

(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。

10. 云计算通常采用什么编程模式

1)MapRece

MapRece是Google公司的Jeff Dean等人提出的编程模型,用于大规模数据的处理和生成。从概念上讲,MapRece处理一组输入的key/value对(键值对),产生另一组输出的键值对。当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Rece(化简)函数,用来保证所有映射的键值对中的每一个共享相同的键组。程序员只需要根据业务逻辑设计Map和Rece函数,具体的分布式、高并发机制由MapRece编程系统实现。

相信大家对MapRece相关机制已经比较熟悉,这里不做更深入的阐述。

MapRece在Google得到了广泛应用,包括反向索引构建、分布式排序、Web访问日志分析、机器学习、基于统计的机器翻译、文档聚类等。

Hadoop——作为MapRece的开源实现——得到了Yahoo!、Facebook、IBM等大量公司的支持和应用。

2)Dryad

Dryad是Microsoft设计并实现的允许程序员使用集群或数据中心计算资源的数据并行处理编程系统。从概念上讲,一个应用程序表示成一个有向无环图(Directed Acyclic Graph,DAG)。顶点表示计算,应用开发人员针对顶点编写串行程序,顶点之间的边表示数据通道,用来传输数据,可采用文件、TCP管道和共享内存的FIFO等数据传输机制。Dryad类似Unix中的管道。如果把Unix中的管道看成一维,即数据流动是单向的,每一步计算都是单输入单输出,整个数据流是一个线性结构,那么Dryad可以看成是二维的分布式管道,一个计算顶点可以有多个输入数据流,处理完数据后,可以产生多个输出数据流,一个Dryad作业是一个DAG。
3)Pregel

Pregel是Google提出的一个面向大规模图计算的通用编程模型。许多实际应用中都涉及到大型的图算法,典型的如网页链接关系、社交关系、地理位置图、科研论文中的引用关系等,有的图规模可达数十亿的顶点和上万亿的边。Pregel编程模型就是为了对这种大规模图进行高效计算而设计。

阅读全文

与mapreduce聚类算法相关的资料

热点内容
reactnative与android 浏览:663
程序员是干什么的工作好吗 浏览:258
kbuild编译ko 浏览:469
条件编译的宏 浏览:564
韩语编程语言 浏览:644
小程序开发如何租用服务器 浏览:78
怎么把钉钉文件夹保存到手机里 浏览:69
兵法pdf 浏览:643
app格式化下载不起怎么办 浏览:34
信捷加密文件是干嘛用的 浏览:952
su模型下载怎么解压不了 浏览:182
国际体验服如何把服务器改为亚服 浏览:882
手机怎么关闭视频加密 浏览:464
单片机编程存表法 浏览:721
富士康服务器是什么 浏览:454
编译是二进制吗 浏览:264
小程序账号登录源码 浏览:878
云南社保局app叫什么 浏览:699
美女程序员吃大餐 浏览:213
项目二级文件夹建立规则 浏览:562