‘壹’ 有哪些数学着作
《算数书》 《算经十书》 《九章算术》 《数书九章》 《测圆海镜》 《益古演段》 《详解九章算法》 《杨辉算法》 《算学启蒙》 《四元玉鉴》 《九章算法比类大全》 《算法统宗》 《数理精蕴》 《梅氏丛书辑要》 《视学》 《割圆密率捷法》 《畴人传》 《衡斋算学遗书合刻》 《李氏遗书》 《求表捷术》 《则古昔斋算学》 《莱因德纸草书》 《几何原本》 《已知条件》 《数沙者》 《论球和圆柱》 《抛物弓形求积》 《论劈锥曲面体与椭球体》 《圆锥曲线论》(阿波罗尼奥斯) 《度量论》 《算术入门》 《天文学大成》 《算术》 《数学汇编》 《阿耶波多历数书》 《婆罗摩历算书》 《代数学》(花拉子米) 《代数学》(奥马?海亚姆) 《天文系统极致》 《算盘书》 《论完全四边形》 《论各种三角形》 《算术、几何、比及比例全书》 《大术》 《数量概论》 《砺智石》 《代数学》(邦贝利) 《论十进》 《分析术人门》 《奇妙的对数表的描述》 《不可分量几何学》 《平面与立体轨迹引论》 《求极大值与极小值的方法》 《几何学》 《圆锥曲线论稿》 《圆锥曲线论》(帕斯卡) 《无穷算术》 《几何学讲义》 《运用无穷多项方程的分析学》 《流数法与无穷级数》 《自然哲学的数学原理》 《广义算术》 《一种求极大、极小值与切线的新方法》 《发微算法》 《机会论》 《猜度术》 《正的和反的增量方法》 《流数通论》 《寻求具有某种极大或极小性质的曲线的技巧》 《无穷分析引论》 《代数学人门》 《数学史》 《分析力学》 《解析函数论》 《几何学基础》 《画法几何学》 《天体力学》 《概率的分析理论》 《算术研究》 《纯粹分析的证明》 《分析教程》 《关于定积分理论的报告》 《热的分析理论》 《论图形的射影性质》 《高于四次的一般方程的代数求解之不可能性的证明》 《关于曲面的一般研究》 《数学分析在电磁理论中的应用》 《椭圆函数论新基础》 《代数通论》 《论方程的根式可解性条件》 《绝对空间的科学》 《几何图形相互依赖性的系统发展》 《具有完善的平行线理论的新几何学原理》 《线性扩张论》 《位置的几何学》 《形式逻辑》 《单复变函数的一般理论基础》 《关于用三角级数表示函数的可能性》 《关于几何基础的假设》 《四元数讲义》 《思维规律的研究》 《数论讲义》 《置换与代数方程》 《连续性与无理数》 《对于近代几何学研究的比较考察》 《概念语言》 《关于由微分方程确定的曲线》 《天体力学新方法》 《位置分析》 《函数论论文集》 《算术原理》 《连分式研究》
‘贰’ 着名的数学着作有哪些
1、《张丘建算经》:中国古代数学着作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。自张邱建以后,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。
2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。它是一部成就辉煌的数学名着,受到近代数学史研究者的高度评价,认为是中国数学着作中最重要的一部,同时也是中世纪最杰出的数学着作之一。
但其美中不足的是,在四元玉鉴中,对于一些重要的问题如求解高次联立方程组的消去法等解说过于简略,并且对于书中每一个问题的解法也没有列出详细的演算过程,故比较深奥,人们很难读懂。以致于自朱世杰之后,中国这种在数学上高度发展的局面不但没有保持发展下去,反而很多成就在明、清的一段时期内几乎失传。
3、《数书九章》:《数书九章》是对《九章算术》的继承和发展,概括了宋元时期中国传统数学的主要成就,标志着中国古代数学的高峰。当它还是抄本时就先后被收入《永乐大典》和《四库全书》。1842年第一次印刷后即在中国民间广泛流传。
《数书九章》最初叫《数术大略》或《数学大略》(9卷),分为9类,每类为一卷。约到元代时更名为《数学九章》,内容也由9卷改为18卷。明初抄本被收入《永乐大典》(1408),另抄本藏于文渊阁。明代学者王应遴传抄时定名为《数书九章》,明末学者赵琦美再抄时沿用此名。抄本形式流传到清代,1781年由李锐校订后收入《四库全书》。
4、《九章算术》:《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。
该书内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史着作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
5、《孙子算经》:《孙子算经》是中国古代重要的数学着作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。传本的《孙子算经》共三卷。
卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。
‘叁’ 伟大的数学着作有哪些
科普类数学名着: 1 拓扑学奇趣,[苏联]伏.巴尔佳斯基,伏.叶弗来莫维契编着,裘光明译
2 拓扑学的首要概念 作者:(美)陈锡驹(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)着 一般附注:据1966年英文版译
3 Famous Problems of Elementary Geometry 作 者(德)克莱因(F. Kiein) , 译 者 沈一兵
4 奇妙而有趣的几何 作 者 韦尔斯
5 几何学的故事 作者:列昂纳多·姆洛迪诺夫
6 近代欧氏几何学 作者:(美)R·A·约翰逊着、单壿译
7 《古今数学思想》, (美)莫里斯·克莱因着,张理京等译 共4册
8 《数学,确定性的丧失》 作者:(美)克莱因 着,李宏魁 译
9 数学珍宝:历史文献精选 着 作 者: 李文林
10《几何学的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)着
11 几何的有名定理 作者:(日)矢野健太郎着
12 什么是数学 作者:(美)R·柯,H·罗宾 着,I·斯图尔特 修订,左平,张饴慈 译
13 《证明与反驳》 作者:伊姆雷.拉卡托斯
14 数学与猜想(共两卷) G.波利亚,
15 《数学的发现》 作者:(美)乔治·波利亚 着, 刘景麟 等译
16 《怎样解题》 作者:(美)G·波利亚|译者:涂泓//冯承天
17 数学——它的内容,方法和意义(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亚历山大洛夫 译 者 孙小礼, 赵孟养 裘光明 严士健
18 圆锥曲线的几何性质----通俗数学名着译丛 作者:英国)a科克肖特
19 东西数学物语 作者:(日)平山谛 着,代钦 译 丛书名: 通俗数学名着译丛
20 来自圣经的证明(第3版)(英文版) 作者:(德)艾格尼,(德)齐格勒 着
21 计算出人意料(从开普勒到托姆的时间图景) 作者:伊法儿.埃克郎
22 爱丽丝漫游数学奇境 作者:(日)钓 浩康 着,吴方 译
23 费马大定理 又名: Fermat's Last Theorem 作者: (英)西蒙�9�9辛格 译者: 薛密 副标题: 一个困惑了世间智者358年的谜
24 100个着名数学问题
25 数学中的智巧传记类数学名着 1《数字情种》(爱多士传) 作者:保罗.霍夫曼 2 《我的大脑敞开了——天才数学家保罗·爱多士传奇》 作者布鲁斯.谢克特[美]
3 《女数学家传奇》 作者:徐品方
4《一个数学家的辩白》 作者: 哈代 译者: 王希勇
5《数学大师》 译者: 徐源 作者: (美)E·T·贝尔 副标题: 从芝诺到庞加莱
6 现代数学家传略辞典 作 者 张奠宙
7 世界着名数学家传记(上、下集) 作 者 吴文俊
8 数学精英
9 最后的炼金术士——牛顿传 作者 (英)怀特专业数学名着 1 《从微分观点看拓扑》J.W.米尔诺2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:伊萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得原着, 燕晓东编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)
8. 《微积分学教程》菲赫金哥尔兹
9. 《有限群表示》J.P.塞尔
10. 《曲线和曲面的微分几何》杜卡谟
11. 《曲面论》达布
12. 《数论导引》华罗庚
13. 《代数学基础》贾柯伯逊
14. 《交换代数》阿蒂亚
‘肆’ 求数学名着
1 《从微分观点看拓扑》J.W.米尔诺
2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:伊萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得 原着, 燕晓东 编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)
8. 《微积分学教程》菲赫金哥尔兹
9. 《有限群表示》J.P.塞尔
10. 《曲线和曲面的微分几何》杜卡谟
11. 《曲面论》达布
12. 《数论导引》华罗庚
13. 《代数学基础》贾柯伯逊
14. 《交换代数》阿蒂亚
‘伍’ 数学七大名着,中国
1 《从微分观点看拓扑》J.W.米尔诺
2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉
3 《自然哲学之数学原理》 作者:伊萨克.牛顿
4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得原着, 燕晓东编译
5 《数论报告》希尔伯特
6 《算术研究》高斯
7 《代数几何原理》哈里斯(Harris)七大名着
这7本又叫专业数学名着
‘陆’ 求数学七大名着
1 《从微分观点看拓扑》J.W.米尔诺 2 无穷小分析引论 Introction to analysis of the infinite [作者]:欧拉 3 《自然哲学之数学原理》 作者:伊萨克.牛顿 4 几何原本(13卷视图全本) 作者:(古希腊)欧几里得 原着, 燕晓东 编译 5 《数论报告》希尔伯特 6 《算术研究》高斯 7 《代数几何原理》哈里斯(Harris)七大名着
祝你学习进步,如果满意请选为满意回答
‘柒’ 想买本欧几里得所着的几何原本。。。。。请问大家哪个版本比较好
1、几何原本:一位天才科学家的反科学理性杰作,13卷视图全本 ,(古希腊)欧几里得 原 燕晓东 编译 ,陕西科学技术出版社。
2、欧几里得几何原本 ,(古希腊)欧几里得译者:兰纪正/朱恩宽 ,人民日报出版社。
人民日报出版社的可以将就着看,虽然翻译有一些错误,但不影响阅读.各大书城都有卖,一本,如果要买,它的确比现行的几何教科书好。当然,严格地说,不如从前的几何教科书,这个版本的《原本》稍微有点罗嗦。但是这种罗嗦也是一种必不可少的严谨,而且插图有些错误。
两个版本侧重有点不同,根据自己需要选择对应的版本比较好。
(7)几何原本编译者燕晓东简介扩展阅读:
意义影响
在几何学上的影响和意义
在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾做到。
《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了在西方是欧几里得最先发现的勾股定理,从而说明了欧洲是西方最早发现勾股定理的大洲。
论证方法上的影响
关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;
综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
‘捌’ 几何学的作者是谁
郭敦颙回答:
古希腊数学家欧几里得(Euclid,约前330—前275)着《几何原本》是最早的几何学。现有燕晓东编译本,人民日报出版社。
‘玖’ 列出数学名着
最早的数学着作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。
《算经十书》:周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。是指汉、唐一千多年间的十部着名数学着作。
宋元算书:秦九韶着的《数书九章》(公元1247年);
李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年);
杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年);
朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。