Ⅰ 如何通俗易懂地解释遗传算法
遗传算法,核心是达尔文优胜劣汰适者生存的进化理论的思想。
我们都知道一个种群,通过长时间的繁衍,种群的基因会向着更适应环境的趋势进化,牛B个体的基因被保留,后代越来越多,适应能力低个体的基因被淘汰,后代越来越少。经过几代的繁衍进化,留下来的少数个体,就是相对能力最强的个体了。
那么在解决一些问题的时候,我们能不能学习这样的思想,比如先随机创造很多很多的解,然后找一个靠谱的评价体系,去筛选比较好的解,再用这些好的解像生小宝宝一样生一堆可能更好的解,然后再筛再生,反复弄个几代,得到的说不定就是近似最优解哟
说干就干,有一个经典组合问题叫“背包问题”,我们拿这种思路来试试
“背包问题(Knapsack Problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。”
这个问题的衍生简化问题“0-1背包问题” 增加了限制条件:每件物品只有一件,可以选择放或者不放,更适合我们来举例
这样的问题如果数量少,当然最好选择穷举法
比如一共3件商品,用0表示不取,1表示取,那么就一共有
000 001 010
011 100 101
110 111
这样方案,然后让计算机去累加和,与重量上限比较,留下来的解里取最大即可。
Ⅱ 高分寻达人分别介绍下遗传算法和演化算法,以及之间的联系和区别
根据阅读的资料,大概有以下判断:
遗传算法是演化算法中的一种。
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。
遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。 作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显着特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。
遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:
创建一个随机的初始状态
初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
评估适应度
对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。
繁殖(包括子代突变)
带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。
下一代
如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。
并行计算
非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。
http://ke..com/view/45853.html
演化算法:
这部分的研究主要是提供具有演化特征的算法,已知的遗传算法是其中之一。许多新的算法正在研究中。由于遗传算法的整体搜索策略和优化计算时不依赖于梯度信息,所以它的应用非常广泛,尤其适合于处理传统搜索方法难以解决的高度复杂的非线性问题。人工生命研究的重要内容就是进化现象,遗传算法是研究进化现象的重要方法之一
我国学者接触这个领域较晚,目前尚未形成声势和有规模的研究队伍。1997年夏天,在中科院基础局、国家科委基础司及中国国际经济及技术交流中心的支持下,由中科院系统科学所和自动化研究所举办了第一次人工生命及进化机器人研讨会[20]。与会者约60人。除去邀请了五位国际知名学者的学术报告之外,国内也有数名学者介绍了相关的研究成果。主要在数字生命、复杂巨系统方面进行了一些研究。据目前了解到的情况,国内尚有一些人在研究演化算法,在人工智能的一本书上有一段介绍人工生命。但对人工社会、人工生态环境及进化机器人等尚无人问津。
http://blog.ustc.e.cn/chujx/archives/000925.html
Ⅲ 遗传算法基本思想是什么
遗传算法的基本思想是基于Darwin进化论和Mendel的遗传学说的。
Ⅳ 如何通俗易懂地解释遗传算法有什么例子
相信遗传算法的官方定义你已经看过,就我个人理解
遗传算法的思想是物竞天择,优胜劣汰。
你可以理解为,当我们解某道数学题时,如果这个题太难我们没法列公式算出正确答案,我们有时候也可以蒙答案去反过来看看是否满足这道题提干的要求,如果能满足,说明我们蒙的答案是正确的。但是蒙对答案要试很多遍,每次随机的去试数可能要试1000次才能蒙对。可是遗传算法可以让我们科学的去蒙答案,每次蒙的答案都会比上一次蒙的更接近正确答案,这样可能蒙十几次我们就找到正确答案了。
希望我的回答对你理解GA有所帮助,望采纳
Ⅳ 请问什么是遗传算法,并给两个例子
遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借
用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性
的提高。这一点体现了自然界中"物竞天择、适者生存"进化过程。1962年Holland教授首次
提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方
面,并奠定了坚实的理论基础。 用遗传算法解决问题时,首先要对待解决问题的模型结构
和参数进行编码,一般用字符串表示,这个过程就将问题符号化、离散化了。也有在连续
空间定义的GA(Genetic Algorithm in Continuous Space, GACS),暂不讨论。
一个串行运算的遗传算法(Seguential Genetic Algoritm, SGA)按如下过程进行:
(1) 对待解决问题进行编码;
(2) 随机初始化群体X(0):=(x1, x2, … xn);
(3) 对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好
坏;
(4) 应用选择算子产生中间代Xr(t);
(5) 对Xr(t)应用其它的算子,产生新一代群体X(t+1),这些算子的目的在于扩展有限
个体的覆盖面,体现全局搜索的思想;
(6) t:=t+1;如果不满足终止条件继续(3)。
GA中最常用的算子有如下几种:
(1) 选择算子(selection/reproction): 选择算子从群体中按某一概率成对选择个
体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌(roulett
e wheel)模型。
(2) 交叉算子(Crossover): 交叉算子将被选中的两个个体的基因链按概率pc进行交叉
,生成两个新的个体,交叉位置是随机的。其中Pc是一个系统参数。
(3) 变异算子(Mutation): 变异算子将新个体的基因链的各位按概率pm进行变异,对
二值基因链(0,1编码)来说即是取反。
上述各种算子的实现是多种多样的,而且许多新的算子正在不断地提出,以改进GA的
某些性能。系统参数(个体数n,基因链长度l,交叉概率Pc,变异概率Pm等)对算法的收敛速度
及结果有很大的影响,应视具体问题选取不同的值。
GA的程序设计应考虑到通用性,而且要有较强的适应新的算子的能力。OOP中的类的继
承为我们提供了这一可能。
定义两个基本结构:基因(ALLELE)和个体(INDIVIDUAL),以个体的集合作为群体类TP
opulation的数据成员,而TSGA类则由群体派生出来,定义GA的基本操作。对任一个应用实
例,可以在TSGA类上派生,并定义新的操作。
TPopulation类包含两个重要过程:
FillFitness: 评价函数,对每个个体进行解码(decode)并计算出其适应度值,具体操
作在用户类中实现。
Statistic: 对当前群体进行统计,如求总适应度sumfitness、平均适应度average、最好
个体fmax、最坏个体fmin等。
TSGA类在TPopulation类的基础上派生,以GA的系统参数为构造函数的参数,它有4个
重要的成员函数:
Select: 选择算子,基本的选择策略采用轮盘赌模型(如图2)。轮盘经任意旋转停止
后指针所指向区域被选中,所以fi值大的被选中的概率就大。
Crossover: 交叉算子,以概率Pc在两基因链上的随机位置交换子串。
Mutation: 变异算子,以概率Pm对基因链上每一个基因进行随机干扰(取反)。
Generate: 产生下代,包括了评价、统计、选择、交叉、变异等全部过程,每运行一
次,产生新的一代。
SGA的结构及类定义如下(用C++编写):
[code] typedef char ALLELE; // 基因类型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 个体定义
class TPopulation{ // 群体类定义
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 评价函数
virtual void Statistics(); // 统计函数
};
class TSGA : public TPopulation{ // TSGA类派生于群体类
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 产生新的一代
};
用户GA类定义如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况
也不同。在实验中参数一般选取如下:个体数n=50-200,变异概率Pm=0.03, 交叉概率Pc=
0.6。变异概率太大,会导致不稳定。
参考文献
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陈根社、陈新海,"遗传算法的研究与进展",《信息与控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"采用遗传算法自学习模型控制规则",《自动化理论、技术与应
用》,中国自动化学会 第九届青年学术年会论文集,1993, PP233-238
● 方建安、邵世煌,"采用遗传算法学习的神经网络控制器",《控制与决策》,199
3,8(3), PP208-212
● 苏素珍、土屋喜一,"使用遗传算法的迷宫学习",《机器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993
Ⅵ 非数值算法的模拟退火算法
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体
内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平
衡态,最后在常温时达到基态,内能减为最小。根据Metropolis 准则,粒子在温度T 时趋于
平衡的概率为e-ΔE/(kT),其中E 为温度T 时的内能,ΔE 为其改变量,k 为Boltzmann 常
数。用固体退火模拟组合优化问题,将内能E 模拟为目标函数值f,温度T 演化成控制参数
t,即得到解组合优化问题的模拟退火算法:由初始解i 和控制参数初值t 开始,对当前解重
复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t 值,算法终止时的当
前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火
过程由冷却进度表(Cooling Schele)控制,包括控制参数的初值t 及其衰减因子Δt、每个t
值时的迭代次数L 和停止条件S。
1、模拟退火算法可以分解为解空间、目标函数和初始解三部分 。 它为问题的所有可能(可行的或包括不可行的)解的集合,它限定了初始解选取和新解产
生时的范围。对无约束的优化问题,任一可能解(possible solution)即为一可行解(feasible
solution),因此解空间就是所有可行解的集合;而在许多组合优化问题中,一个解除满足目
标函数最优的要求外,还必须满足一组约束(constraint),因此在解集中可能包含一些不可行
解(infeasible so1ution)。为此,可以限定解空间仅为所有可行解的集合,即在构造解时就考
虑到对解的约束;也可允许解空间包含不可行解,而在目标函数中加上所谓罚函数(penalty
function)以“惩罚”不可行解的出现。 它是对问题的优化目标的数学描述,通常表述为若干优化目标的一个和式。目标函数的
选取必须正确体现对问题的整体优化要求。例如,如上所述,当解空间包含不可行解时,目
标函数中应包含对不可行解的罚函数项,借此将一个有约束的优化问题转化为无约束的优化
问题。一般地,目标函数值不一定就是问题的优化目标值,但其对应关系应是显明的。此外,
目标函数式应当是易于计算的,这将有利于在优化过程中简化目标函数差的计算以提高算法
的效率。 是算法迭代的起点,试验表明,模拟退火算法是鲁棒的(Robust),即最终解的求得几乎
不依赖于初始解的选取。
2、基本思想:
(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T 值的迭
代次数L
(2) 对k=1,,L 做第(3)至第6 步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0 则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的
当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T 逐渐减少,且T->0,然后转第2 步。
二、遗传算法
遗传算法的基本思想是基于Darwin 进化论和Mendel 的遗传学说的。
Darwin 进化论最重要的是适者生存原理。它认为每一物种在发展中越来越适应环境。物种
每个个体的基本特征由后代所继承,但后代又会产生一些异于父代的新变化。在环境变化时,
只有那些能适应环境的个体特征方能保留下来。
Mendel 遗传学说最重要的是基因遗传原理。它认为遗传以密码方式存在细胞中,并以基因
形式包含在染色体内。每个基因有特殊的位置并控制某种特殊性质;所以,每个基因产生的
个体对环境具有某种适应性。基因突变和基因杂交可产生更适应于环境的后代。经过存优去
劣的自然淘汰,适应性高的基因结构得以保存下来。
遗传算法简称GA(Genetic Algorithm),在本质上是一种不依赖具体问题的直接搜索方法。
1、遗传算法的原理
遗传算法GA 把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在
执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的
“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过
交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会
收敛到最适应环境的一个“染色体”上,它就是问题的最优解。
长度为L 的n 个二进制串bi(i=1,2,,n)组成了遗传算法的初解群,也称为初始群体。
在每个串中,每个二进制位就是个体染色体的基因。根据进化术语,对群体执行的操作有三
种:
(1).选择(Selection)
这是从群体中选择出较适应环境的个体。这些选中的个体用于繁殖下一代。故有时也称这一
操作为再生(Reproction)。由于在选择用于繁殖下一代的个体时,是根据个体对环境的适
应度而决定其繁殖量的,故而有时也称为非均匀再生(differential reproction)。
(2).交叉(Crossover)
这是在选中用于繁殖下一代的个体中,对两个不同的个体的相同位置的基因进行交换,从而
产生新的个体。
(3).变异(Mutation)
这是在选中的个体中,对个体中的某些基因执行异向转化。在串bi 中,如果某位基因为1,
产生变异时就是把它变成0;反亦反之。
2、遗传算法的特点
(1).遗传算法从问题解的中集开始嫂索,而不是从单个解开始。
这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;
容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。
(2).遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。
由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。
遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。
(3).遗传算法有极强的容错能力
遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅
速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,
遗传算法有很高的容错能力。
(4).遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。
这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最
优解的产生,变异体现了全局最优解的覆盖。
三、神经网络算法
“人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称A.N.N.)是在对人脑组织结构和
运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40 年代
初期,心理学家McCulloch、数学家Pitts 就提出了人工神经网络的第一个数学模型,从此开
创了神经科学理论的研究时代。其后,F.Rosenblatt、Widrow 和Hopf、J.J.Hopfield 等学者又
先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本
单元。据神经生物学家研究的结果表明,人的一个大脑一般有10 10 ~10 11
个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它
较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其
末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经
元的兴奋。神经元细胞体将接受到的所有信号进行简单地处理(如:加权求和,即对所有的
输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输
出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。
1、神经网络的工作原理
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写
“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而
当输入为“B”时,输出为“0”。所以网络学习的准则应该是:如果网络作出错误的的判决,
则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值
赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权
求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”
和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使
连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。如果输出
为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在
于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网
络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,
网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这
两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够
作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识
别的模式也就越多。
2、人工神经网络的特点
人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网
络具有高速信息处理的能力。人脑的每个神经元大约有10 3~10 4 个树突及相应的突
触,一个人的大脑总计约形成10 14 ~10 15 个突触。用神经网络的术语来说,
即是人脑具有10 14 ~10 15 个互相连接的存储潜力。虽然每个神经元的运算
功能十分简单,且信号传输速率也较低(大约100 次/秒),但由于各神经元之间的极度并行互
连功能,最终使得一个普通人的大脑在约1 秒内就能完成现行计算机至少需要数10 亿次处
理步骤才能完成的任务。
人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分
布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及
其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果
才能表达出特定的概念和知识。
由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的
不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想
思维存在于记忆中的事物的完整图象。只要输入的模式接近于训练样本,系统就能给出正确
的推理结论。
正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识
别系统,如:专家系统等,具有另一个显着的优点:健壮性。生物神经网络不会因为个别神
经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微
损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,
无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工
作。
人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超
过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间
动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能
信息处理能力和模拟人脑智能行为能力的一大飞跃。
Ⅶ 遗传算法思想
首先初始化,包括种群的大小,编码的方案,遗传的代数,变异的概率,等等;
然后进行选择操作;
接着是将选择的个体进行交叉,;
然后再进行选择,并将选择的个体进行变异;
最后就是更新最优值了。
大体过程就是这样了。