⑴ kmeans聚类算法是什么
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。
(1)划分式聚类算法扩展阅读:
k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
(3)利用均值等方法更新该类的中心值;
(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
⑵ 大数据分析之聚类算法
大数据分析之聚类算法
1. 什么是聚类算法
所谓聚类,就是比如给定一些元素或者对象,分散存储在数据库中,然后根据我们感兴趣的对象属性,对其进行聚集,同类的对象之间相似度高,不同类之间差异较大。最大特点就是事先不确定类别。
这其中最经典的算法就是KMeans算法,这是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。
KMeans算法本身思想比较简单,但是合理的确定K值和K个初始类簇中心点对于聚类效果的好坏有很大的影响。
聚类算法实现
假设对象集合为D,准备划分为k个簇。
基本算法步骤如下:
1、从D中随机取k个元素,作为k个簇的各自的中心。
2、分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。
3、根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。
4、将D中全部元素按照新的中心重新聚类。
5、重复第4步,直到聚类结果不再变化。
6、将结果输出。
核心java代码如下:
/**
* 迭代计算每个点到各个中心点的距离,选择最小距离将该点划入到合适的分组聚类中,反复进行,直到
* 分组不再变化或者各个中心点不再变化为止。
* @return
*/
public List[] comput() {
List[] results = new ArrayList[k];//为k个分组,分别定义一个聚簇集合,未来放入元素。
boolean centerchange = true;//该变量存储中心点是否发生变化
while (centerchange) {
iterCount++;//存储迭代次数
centerchange = false;
for (int i = 0; i < k; i++) {
results[i] = new ArrayList<T>();
}
for (int i = 0; i < players.size(); i++) {
T p = players.get(i);
double[] dists = new double[k];
for (int j = 0; j < initPlayers.size(); j++) {
T initP = initPlayers.get(j);
/* 计算距离 这里采用的公式是两个对象相关属性的平方和,最后求开方*/
double dist = distance(initP, p);
dists[j] = dist;
}
int dist_index = computOrder(dists);//计算该点到各个质心的距离的最小值,获得下标
results[dist_index].add(p);//划分到对应的分组。
}
/*
* 将点聚类之后,重新寻找每个簇的新的中心点,根据每个点的关注属性的平均值确立新的质心。
*/
for (int i = 0; i < k; i++) {
T player_new = findNewCenter(results[i]);
System.out.println("第"+iterCount+"次迭代,中心点是:"+player_new.toString());
T player_old = initPlayers.get(i);
if (!IsPlayerEqual(player_new, player_old)) {
centerchange = true;
initPlayers.set(i, player_new);
}
}
}
return results;
}
上面代码是其中核心代码,我们根据对象集合List和提前设定的k个聚集,最终完成聚类。我们测试一下,假设要测试根据NBA球员的场均得分情况,进行得分高中低的聚集,很简单,高得分在一组,中等一组,低得分一组。
我们定义一个Player类,里面有属性goal,并录入数据。并设定分组数目为k=3。
测试代码如下:
List listPlayers = new ArrayList();
Player p1 = new Player();
p1.setName(“mrchi1”);
p1.setGoal(1);
p1.setAssists(8);
listPlayers.add(p1);
Player p2 = new Player();
p2.setName("mrchi2");
p2.setGoal(2);
listPlayers.add(p2);
Player p3 = new Player();
p3.setName("mrchi3");
p3.setGoal(3);
listPlayers.add(p3);
//其他对象定义此处略。制造几个球员的对象即可。
Kmeans<Player> kmeans = new Kmeans<Player>(listPlayers, 3);
List<Player>[] results = kmeans.comput();
for (int i = 0; i < results.length; i++) {
System.out.println("类别" + (i + 1) + "聚集了以下球员:");
List<Player> list = results[i];
for (Player p : list) {
System.out.println(p.getName() + "--->" + p.getGoal()
}
}
算法运行结果:
可以看出中心点经历了四次迭代变化,最终分类结果也确实是相近得分的分到了一组。当然这种算法有缺点,首先就是初始的k个中心点的确定非常重要,结果也有差异。可以选择彼此距离尽可能远的K个点,也可以先对数据用层次聚类算法进行聚类,得到K个簇之后,从每个类簇中选择一个点,该点可以是该类簇的中心点,或者是距离类簇中心点最近的那个点。
⑶ 什么情况下使用基于划分聚类的算法
你指的就是聚类算法吧,能说下你要解决的具体问题或领域么,不然没法一概而论。
一般而言,针对一组没法完全看出优劣的数据或者图像或者情况,用聚类算法去分类至少有个算法理论依据。
就像判断一群人里每个人的好坏,你也没法说清,但是用聚类先去划分好,至少有个结果,而且这个结果还有一点理论依据
⑷ 聚类算法有哪些
聚类算法有:划分法、层次法、密度算法、图论聚类法、网格算法、模型算法。
1、划分法
划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。
2、层次法
层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。
3、密度算法
基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。
4、图论聚类法
图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。
5、网格算法
基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法。
6、模型算法
基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。通常有两种尝试方向:统计的方案和神经网络的方案。
(4)划分式聚类算法扩展阅读:
聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。
在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。
⑸ 用于数据挖掘的聚类算法有哪些,各有何优势
聚类方法的分类,主要分为层次化聚类算法,划分式聚类算法,基于密度的聚类算法,基于网格的聚类算法,基于模型的聚类算法等。
而衡量聚类算法优劣的标准主要是这几个方面:处理大的数据集的能力;处理任意形状,包括有间隙的嵌套的数据的能力;算法处理的结果与数据输入的顺序是否相关,也就是说算法是否独立于数据输入顺序;处理数据噪声的能力;是否需要预先知道聚类个数,是否需要用户给出领域知识;算法处理有很多属性数据的能力,也就是对数据维数是否敏感。
.聚类算法主要有两种算法,一种是自下而上法(bottom-up),一种是自上而下法(top-down)。这两种路径本质上各有优势,主要看实际应用的时候要根据数据适用于哪一种,Hierarchical methods中比较新的算法有BIRCH主要是在数据体量很大的时候使用;ROCK优势在于异常数据抗干扰性强……
关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。
⑹ K-Means聚类算法原理是怎么样的
问题:
姓名 身高 体重 眼睛
A 180 X 1.2
A X 140 X
A 180 140 X
A 168 120 1.5
姓名一样,用java算法,判断出是两个人?
⑺ 聚类算法的算法分类
很难对聚类方法提出一个简洁的分类,因为这些类别可能重叠,从而使得一种方法具有几类的特征,尽管如此,对于各种不同的聚类方法提供一个相对有组织的描述依然是有用的,为聚类分析计算方法主要有如下几种: 划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:
(1) 每一个分组至少包含一个数据纪录;
(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);
对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。
大部分划分方法是基于距离的。给定要构建的分区数k,划分方法首先创建一个初始化划分。然后,它采用一种迭代的重定位技术,通过把对象从一个组移动到另一个组来进行划分。一个好的划分的一般准备是:同一个簇中的对象尽可能相互接近或相关,而不同的簇中的对象尽可能远离或不同。还有许多评判划分质量的其他准则。传统的划分方法可以扩展到子空间聚类,而不是搜索整个数据空间。当存在很多属性并且数据稀疏时,这是有用的。为了达到全局最优,基于划分的聚类可能需要穷举所有可能的划分,计算量极大。实际上,大多数应用都采用了流行的启发式方法,如k-均值和k-中心算法,渐近的提高聚类质量,逼近局部最优解。这些启发式聚类方法很适合发现中小规模的数据库中小规模的数据库中的球状簇。为了发现具有复杂形状的簇和对超大型数据集进行聚类,需要进一步扩展基于划分的方法。
使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法; 层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。
例如,在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。
层次聚类方法可以是基于距离的或基于密度或连通性的。层次聚类方法的一些扩展也考虑了子空间聚类。层次方法的缺陷在于,一旦一个步骤(合并或分裂)完成,它就不能被撤销。这个严格规定是有用的,因为不用担心不同选择的组合数目,它将产生较小的计算开销。然而这种技术不能更正错误的决定。已经提出了一些提高层次聚类质量的方法。
代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等; 基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
这个方法的指导思想就是,只要一个区域中的点的密度大过某个阈值,就把它加到与之相近的聚类中去。
代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等; 基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。
代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法; 基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。
通常有两种尝试方向:统计的方案和神经网络的方案。
⑻ 分类和聚类的区别及各自的常见算法
1、分类和聚类的区别:
Classification (分类),对于一个classifier,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning (监督学习),
Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习).
2、常见的分类与聚类算法
所谓分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。如在自然语言处理NLP中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:决策树分类法,朴素贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearestneighbor,kNN),模糊分类法等等。
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
而K均值(K-mensclustering)聚类则是最典型的聚类算法(当然,除此之外,还有很多诸如属于划分法K中心点(K-MEDOIDS)算法、CLARANS算法;属于层次法的BIRCH算法、CURE算法、CHAMELEON算法等;基于密度的方法:DBSCAN算法、OPTICS算法、DENCLUE算法等;基于网格的方法:STING算法、CLIQUE算法、WAVE-CLUSTER算法;基于模型的方法)。
⑼ 聚类算法有哪几种
聚类分析计算方法主要有: 层次的方法(hierarchical method)、划分方法(partitioning method)、基于密度的方法(density-based method)、基于网格的方法(grid-based method)、基于模型的方法(model-based method)等。其中,前两种算法是利用统计学定义的距离进行度量。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然 后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
其流程如下:
(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(3)重新计算每个(有变化)聚类的均值(中心对象);
(4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。
优点: 本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为 O(NKt),其中N是数据对象的数目,t是迭代的次数。
缺点:
1. K 是事先给定的,但非常难以选定;
2. 初始聚类中心的选择对聚类结果有较大的影响。
⑽ 常用的聚类方法有哪几种
聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。
1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。
2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。
3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。
5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。
6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。
(10)划分式聚类算法扩展阅读:
在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。
它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。
许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。
许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。