导航:首页 > 源码编译 > 蚂蚁算法遗传计算公式

蚂蚁算法遗传计算公式

发布时间:2022-08-09 11:43:13

❶ 遗传算法,蚁群算法和粒子群算法都是什么算法

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等[1] 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。

❷ 蚂蚁基因的遗传方式

高中生物伴性遗传知识点总结:伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。3.常见遗传病的遗传方式:(1)单基因遗传:常染色体显性遗传:并指、多指;常染色体隐性遗传:白化病、失天性聋哑X连锁隐性遗传:血友病、红绿色盲;X连锁显性遗传:抗维生素D佝偻病;Y连锁遗传:外耳道多毛症;(2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿;(3)染色体病:染色体数目异常:先天性愚型病;染色体结构畸变:猫叫综合症。单基因遗传病单基因遗传病是指受一对等位基因控制的遗传病,较常见的有红绿色盲、血友病、白化病等。根据致病基因所在染色体的种类,通常又可分四类:一、常染色体显性遗传病致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。此种患者的子女发病的概率相同,均为1/2。此种患者的异常性状表达程度可不尽相同。在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。常见常染色体显性遗传病的病因和临床表现1、多指(趾)、并指(趾)。临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。2、珠蛋白生成障碍性贫血。病因:珠蛋白肽链合成不足或缺失。临床表现:贫血。3、多发性家族性结肠息肉。病因:息肉大小不等,可有蒂,也可以是广底的,分布在下段结肠或全部结肠。临床表现:便血,常有腹痛、腹泻。4、多囊肾。病因:肾实质形成大小不等的囊泡,多为双侧。临床表现:腹痛,血尿,腹部有肿块,高血压和肾功能衰竭。5、先天性软骨发育不全。病因:长骨干骺端软骨细胞形成障碍,软骨内成骨变粗,影响骨的长度,但骨膜下成骨不受影响。临床表现:四肢粗短,躯干相对长,垂手不过髋关节,手指短粗,各指平齐,头围较大,前额前突出,马鞍型鼻梁,下颏前突,腰椎明显前突,臀部后凸。6、先天性成骨发育不全。临床表现:以骨骼易折、巩膜蓝色、耳聋为主要特点。7、视网膜母细胞瘤。临床表现:视力消失,瞳孔呈黄白色,发展可引起青光眼,眼球突出。二、常染色体隐性遗传病致病基因为隐性并且位于常染色体上,基因性状是隐性的,即只有纯合子时才显示病状。此种遗传病父母双方均为致病基因携带者,故多见于近亲婚配者的子女。子代有1/4的概率患病,子女患病概率均等。许多遗传代谢异常的疾病,属常染色体隐性遗传病。按照“一基因、一个酶”或“一个顺反子、一个多肽”(one的概念,这些遗传代谢病的酶或蛋白分子的异常,来自各自编码基因的异常。常见常染色体隐性遗传病的病因和临床表现1、白化病。病因:黑色素细胞缺乏酪氨酸酶,不能使酪氨酸变成黑色素。临床表现:毛发银白色或淡黄色,虹膜或脉络膜不含色素,因而虹膜和瞳孔呈蓝或浅红色,且畏光,部分有曲光不正、斜视及眼球震颤,少数患者智力低下。2、苯丙酮尿症。肝脏中缺乏苯丙氨酸羟化酶,使苯丙氨酸不能氧化成酪氨酸,只能变成苯丙酮酸,大量苯丙氨酸及苯丙酮酸累积在血和脑积液中,并随尿排出,对婴儿神经系统造成不同程度的伤害,并抑制产生黑色素的酪氨酸酶,致使患儿皮肤毛发色素浅。临床表现:不同程度的智力低下,皮肤毛发色浅,尿有发霉臭味,发育迟缓。3、半乳糖血症。病因:由于α1-磷酸半乳糖尿苷转移酶缺乏,使半乳糖代谢被阻断,而积聚在血、尿、组织内,对细胞有损害,主要侵害肝、肾、脑及晶状体。临床表现:婴儿出生数周后出现体重不增、呕吐、腹泻、腹水等症状,可出现低血糖性惊厥、白内障、智力低下等。4、粘多糖病。病因:粘多糖类代谢的先天性障碍,各种组织细胞内积存大量的粘多糖,形成大泡。临床表现:出生时正常,6个月到2岁时开始发育迟缓,可有智力及语言落后,表情呆板,皮肤略厚,似粘液水肿,可有骨关节多处畸形。5、先天性肾上腺皮质增生症。病因:肾上腺皮质合成过程中的各种酶缺乏。临床表现:女性患者男性化,严重者可呈两性畸形;男性患者外生殖器畸形,假性性早熟,可合并高血压、低血钾等症状。三、X连锁显性遗传病X连锁显性遗传一些性状或遗传病的基因位于X染色体上,其性质是显性的,这种遗传方式称为X连锁显性遗传(X-linkeddominantinheritance),这种疾病称为X连锁显性遗传病。目前所知X连锁显性遗传病不足20种。由于致病基因是显性的,并位于X染色体上,因此,不论男性(XAY)和女性(XAXa)只要有一个这种致病基因XA就会发病。与常染色体显性遗传不同之处是,女性患者既可将致病基因传给生子,又可以传给女儿,且机会均等;而男性患者只能将致病基因传给女儿,不传给儿子。由此可见,女性患者多于男性,大约为男性的1倍。另外,从临床上看,女性患者大多数是杂合子,病情一般较男性轻,而男患者病情较重。抗维生素D佝偻病(vitaminDresistantrickets,VDRR)可以作为X连锁显性遗传病的实例。VDRR是一种以低磷酸血症导致骨发育障碍为特征的遗传性骨病。患者主要是肾远曲小管对磷的转运机制有某种障碍,困而尿排磷酸盐增多,血磷酸盐降低而影响骨质钙化。患者身体矮小,有时伴有佝偻病等各种表现。患者用常规剂量的维生素D治疗不能奏效,故有抗维生素D佝偻病之称。从临床观察,女性患者的病情较男性患者轻,多数只有低血磷,佝偻症状不太明显,表现为不完全显性,这可能是女性患者多为杂合子,其中正常X染色体的基因还发挥一定的作用。男性患者(XHY)与正常女性(XhXh)结婚,所生子女中,儿子全部正常,女儿全部发病;女性患者(XHXh)与正常男性(XhX)结婚,子女中正常与患者各占1/2.X连锁显性遗传病病种较少,有抗维生素D性佝偻病等。这类病女性发病率高,这是由于女性有两条X染色体,获得这一显性致病基因的概率高之故,但病情较男性轻。男性患者病情重,他的全部女儿都将患病。常见X伴性显性遗传病的病因和临床表现1、抗维生素D佝偻病。病因:甲状腺功能不足,影响体内磷、血钙的代谢过程,致使血磷降低,且维生素D治疗效果不好。临床表现为:身材矮小,可伴佝偻病和骨质疏松症的各种表现。2、家族性遗传性肾炎。病因:肾小管发育异常,集合管比常人分支少,呈囊状,远曲小管薄,但近曲小管变化轻。临床表现为:慢性进行性肾炎,反复发作性血尿,1/3~1/2患者伴神经性耳聋。四、X连锁隐性遗传病致病基因在X染色体上,性状是隐性的,女性只是携带者,这类女性携带者与正常男性婚配,子代中的男性有1/2是概率患病,女性不发病,但有1/2的概率是携带者。男性患者与正常女性婚配,子代中男性正常,女性都是携带者。因此X连锁隐性遗传在患病系中常表现为女性携带,男性患病。男性的致病基因只能随着X染色体传给女儿,不能传给儿子,称为交叉遗传。常见X伴性隐性遗传病的病因和临床表现1、血友病A。病因:血浆中抗血友病球蛋白减少,AHG即第Ⅷ因子凝血时间延长。临床表现:轻微创伤即出血不止,不出血时与常人无异。2、血友病B。病因:血浆中缺乏凝血酶成份PTC,即第Ⅸ因子。临床表现同血友病A。3、色盲。临床表现:全色盲对所有颜色看成无色,红绿色盲为不能区别红色和绿色。4、进行性肌营养不良。病因:为原发性横纹肌变性并进行性发展。临床表现:初为行走笨拙,易跌到,登梯及起立时有困难,从仰卧到起立必须先俯卧,双手撑地,再用两手扶小腿、大腿才能站起。进行性肌肉萎缩,但一般不累及面部及手部肌肉。隔代遗传隔代遗传从遗传学的角度看,致病基因的传递是代代相传的,一个个体一旦没有从亲代继承到某个特定的致病基因,那么,其后代一般也不必担忧此种致病基因所带来的遗传病。伴性遗传病患儿绝大多数为男性,追踪其家族发病的情况时可以发现,患者的母亲是正常健康人,但其外祖父却是本病患者。从中可以总结出两个特点:①伴性遗传病是从外祖父传给外孙,跳过母亲这一代,有明显的隔代遗传现象;为什么这种伴性遗传病都是隔代遗传的呢?是因为这种病是隐性遗传病,并且都是通过女性传递的。女性虽不发病却是伴性遗传病致病基因的携带者,并将这种病传递给其子代中的男性。比如甲型血友病,它的发病基因是位于X染色体上的第八凝血因子突变所致,是一种典型的隐性遗传病,其发病者均为男性。由于父亲遗传给儿子的性染色体只是Y,传给女儿的则是唯一的一个带致病基因的X染色体,所以患血友病的男人,他的儿子完全正常,女儿虽然表型正常,但全部为致病基因携带者,她们结婚所生男孩约有一半将患有外公所患的遗传病。由此可见,伴性隐性遗传病虽有隔代现象,但致病基因都是通过患者女儿传递下去的

❸ 哪本python书立有蚁群算法

简介

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
定义

各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

解决的问题

三维地形中,给出起点和重点,找到其最优路径。

程序代码:

numpy as npimport matplotlib.pyplot as plt%pylabcoordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],[1340.0,725.0],[1740.0,245.0]])def getdistmat(coordinates):num = coordinates.shape[0]distmat = np.zeros((52,52))for i in range(num):for j in range(i,num):distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])return distmatdistmat = getdistmat(coordinates)numant = 40 #蚂蚁个数numcity = coordinates.shape[0] #城市个数alpha = 1 #信息素重要程度因子beta = 5 #启发函数重要程度因子rho = 0.1 #信息素的挥发速度Q = 1iter = 0itermax = 250etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度pheromonetable = np.ones((numcity,numcity)) # 信息素矩阵pathtable = np.zeros((numant,numcity)).astype(int) #路径记录表distmat = getdistmat(coordinates) #城市的距离矩阵lengthaver = np.zeros(itermax) #各代路径的平均长度lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路径长度pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路径长度while iter < itermax:# 随机产生各个蚂蚁的起点城市if numant <= numcity:#城市数比蚂蚁数多pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]else: #蚂蚁数比城市数多,需要补足pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]length = np.zeros(numant) #计算各个蚂蚁的路径距离for i in range(numant):visiting = pathtable[i,0] # 当前所在的城市#visited = set() #已访问过的城市,防止重复#visited.add(visiting) #增加元素unvisited = set(range(numcity))#未访问的城市unvisited.remove(visiting) #删除元素for j in range(1,numcity):#循环numcity-1次,访问剩余的numcity-1个城市#每次用轮盘法选择下一个要访问的城市listunvisited = list(unvisited)probtrans = np.zeros(len(listunvisited))for k in range(len(listunvisited)):probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)*np.power(etatable[visiting][listunvisited[k]],alpha)cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()cumsumprobtrans -= np.random.rand()k = listunvisited[find(cumsumprobtrans>0)[0]] #下一个要访问的城市pathtable[i,j] = kunvisited.remove(k)#visited.add(k)length[i] += distmat[visiting][k]visiting = klength[i] += distmat[visiting][pathtable[i,0]] #蚂蚁的路径距离包括最后一个城市和第一个城市的距离#print length# 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数lengthaver[iter] = length.mean()if iter == 0:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()else:if length.min() > lengthbest[iter-1]:lengthbest[iter] = lengthbest[iter-1]pathbest[iter] = pathbest[iter-1].()else:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()# 更新信息素changepheromonetable = np.zeros((numcity,numcity))for i in range(numant):for j in range(numcity-1):changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]pheromonetable = (1-rho)*pheromonetable + changepheromonetableiter += 1 #迭代次数指示器+1#观察程序执行进度,该功能是非必须的if (iter-1)%20==0:print iter-1# 做出平均路径长度和最优路径长度fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))axes[0].plot(lengthaver,'k',marker = u'')axes[0].set_title('Average Length')axes[0].set_xlabel(u'iteration')axes[1].plot(lengthbest,'k',marker = u'')axes[1].set_title('Best Length')axes[1].set_xlabel(u'iteration')fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')plt.close()#作出找到的最优路径图bestpath = pathbest[-1]plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$cdot$')plt.xlim([-100,2000])plt.ylim([-100,1500])for i in range(numcity-1):#m,n = bestpath[i],bestpath[i+1]print m,nplt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')ax=plt.gca()ax.set_title("Best Path")ax.set_xlabel('X axis')ax.set_ylabel('Y_axis')plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')plt.close()

❹ 求生物学 蚁群算法

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
6、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。

❺ 蚂蚁算法的思想进化公式及遗传算法的算法流程图

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

❻ 如何用蚁群算法来计算固定时间内走更多的城市且路程最短

概念:蚁群算法(ant colony optimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值
其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序
应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内
引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.

❼ 蚁群算法是什么

蚁群算法,又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。 它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

原理
设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。

然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?

❽ 什么是蚂蚁算法详解!!

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值.
蚁群算法是一种求解组合最优化问题的新型通用启发式方法,该方法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点。通过建立适当的数学模型,基于故障过电流的配电网故障定位变为一种非线性全局寻优问题。由柳洪平创建。
预期的结果:
各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
原理:
为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
7、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。
问题:
说了这么多,蚂蚁究竟是怎么找到食物的呢?
在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
当然,在有一只蚂蚁找到了食物的时候,其他蚂蚁会沿着信息素很快找到食物的。
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。
引申
跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:
1、多样性
2、正反馈
多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。
引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。
既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。
蚁群算法的实现
下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。
其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。

❾ 蚁群算法的内容

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

阅读全文

与蚂蚁算法遗传计算公式相关的资料

热点内容
优信二手车解压后过户 浏览:61
Windows常用c编译器 浏览:778
关于改善国家网络安全的行政命令 浏览:833
安卓如何下载网易荒野pc服 浏览:654
javainetaddress 浏览:104
苹果4s固件下载完了怎么解压 浏览:1002
命令zpa 浏览:285
python编译器小程序 浏览:944
在app上看视频怎么光线调暗 浏览:540
可以中文解压的解压软件 浏览:591
安卓卸载组件应用怎么安装 浏览:912
使用面向对象编程的方式 浏览:339
程序员项目经理的年终总结范文 浏览:929
内衣的加密设计用来干嘛的 浏览:432
淮安数据加密 浏览:292
魔高一丈指标源码 浏览:982
松下php研究所 浏览:168
c回调java 浏览:399
梦幻端游长安地图互通源码 浏览:745
电脑本地文件如何上传服务器 浏览:312