Ⅰ 什么是矢量和
矢量和指方向与大小的和。
【矢量】亦称“向量”.有些物理量,是由数值大小和方向才能完全确定的物理量,这些量之间的运算并不遵循一般的代数法则,在相加减时它们遵从几何运算法则.这样的量叫“物理矢量”.如速度、加速度、位移、力、冲量、动量...
Ⅱ 什么是矢量,什么是标量
有些物理量,既要由数值大?包括有关的单位),又要由方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。这样的量叫做物理矢量。
有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。这样的量叫做物理标量。
简单来说,标量是指只有大小,没有方向的物理量。如:质量、时间以及我们这里学习的功等。
与它相对应的是矢量,矢量是指既有大小又有方向的物理量,如力、位移、速度、
冲量、动量等等。
Ⅲ 哪个物理量可以用标积定义
物理量可以用标积定义的是:
标量:有些物理量,既要有数值大小(包括有关的单位),又要由方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。这样的量叫做物理矢量。有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。这样的量叫做物理标量。
矢量:矢量是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。
Ⅳ 谁知道矢径是什么
矢径就是矢量端点的路径。矢径是指从一个参考点指向一个研究对象点的矢量。这个研究对象点可以是力的作用点,如力对参考点的矩的概念要用到矢径,研究对象点也可以是运动中的质点,这时矢径是随时间变化的。
由定点O画到动点M的有向线段,称为动点M的矢径,它的分解式为矢径唯一的决定了点M的位置。当点M运动时,矢径r是随时间而变的变矢量,一般可表示为时间t的单值连续函数,这方程称为点M的矢量形式的运动方程。矢径的端点在空间描出的曲线称为矢径端图,它就是动点的轨迹。
矢量的运算法则
1、矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。即A-B=A+(-B)。矢量的乘法。
矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积。例如,物理学中,功、功率等的计算是采用两个矢量的标积。W=F·s,P=F·v。力矩、洛伦兹力等的计算是采用两个矢量的矢积。M=r×F,F=qv×B。
2、物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是研究物理学的有用工具。