导航:首页 > 源码编译 > 遗传算法图像为什么是阶梯

遗传算法图像为什么是阶梯

发布时间:2022-08-19 19:32:15

1. 遗传算法路径规划是什么原理

遗传算法有相当大的引用。遗传算法在游戏中应用的现状在遗传编码时, 一般将瓦片的坐标作为基因进行实数编码, 染色体的第一个基因为起点坐标, 最后一个基因为终点坐标, 中间的基因为路径经过的每一个瓦片的坐标。在生成染色体时, 由起点出发, 随机选择当前结点的邻居节点中的可通过节点, 将其坐标加入染色体, 依此循环, 直到找到目标点为止, 生成了一条染色体。重复上述操作, 直到达到指定的种群规模。遗传算法的优点:1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。遗传算法的缺点:遗传算法在进行编码时容易出现不规范不准确的问题。

2. 为什么遗传算法的亲和度曲线是折线呢,不是平滑曲线,一段一段的

应该是适应度曲线吧。
本质上是拆线,因为是离散的点组成(每个个体是离散的)。
一段一段是因为(MATLAB)在绘图时把它们连成了直线

3. C语言输出一组数,为什么成阶梯状分布

看输出,你是把%12ld的字母"l"打成数字"1"了,导致每个数字输出占121个位置,到边缘后换行
前20项不超过10000,用%5d就够了,把printf那行改成
printf("%5d%5d",a,b);

4. 遗传算法作图像分割时的最佳阈值为什么总在变化

在此提供两种方法,一,最大阈值分割(大律法):I=imread('test.jpg');subplot(1,3,1);imshow(I);title('原图');I1=rgb2gray(I);subplot(1,3,2);imhist(I1);title('直方图');level=graythresh(I);g=im2bw(I,level);%最佳阈值levelsubplot(1,3,3);imshow(g);title('阈值分割');%在Command窗口输出灰度阈值disp(strcat('graythresh计算灰度阈值:',num2str(uint8(level*255))))第二种:迭代求阈值I=imread('C:test.jpg');Zmax=max(max(I));Zmin=min(min(I));TK=(Zmax+Zmin)/2;%初始阈值flag=1;[m,n]=size(I);while(flag)fg=0;bg=0;fgsum=0;bgsum=0;fori=1:mforj=1:ntmp=I(i,j);if(tmp>=TK)fg=fg+1;fgsum=fgsum+double(tmp);elsebg=bg+1;bgsum=bgsum+double(tmp);endenden1=fgsum/fg;u2=bgsum/bg;TKTmp=uint8((u1+u2)/2);if(TKTmp==TK)flag=0;elseTK=TKTmp;endenddisp(strcat('迭代后的阈值:',num2str(TK)));newI=im2bw(I,double(TK)/255);subplot(1,2,1);imshow(I);title('原图')subplot(1,2,2);imshow(newI);tltle('阈值分割图');

5. 遗传算法流程图

首先你的这个问题没有什么意义,明显x=31的时候y最大嘛。。。

%定义遗传算法参数
NIND=40; %个体数目(Number of indivials)
MAXGEN=25; %最大遗传代数(Maximum number of generations)
PRECI=20; %变量的二进制位数(Precision of variables)
GGAP=0.9; %代沟(Generation gap)
trace=zeros(2, MAXGEN); %寻优结果的初始值
FieldD=[20;0;31;1;0;1;1]; %区域描述器(Build field descriptor)
Chrom=crtbp(NIND, PRECI); %初始种群
gen=0; %代计数器
variable=bs2rv(Chrom, FieldD); %计算初始种群的十进制转换
ObjV=variable.*variable; %计算目标函数值
while gen<MAXGEN
FitnV=ranking(-ObjV); %分配适应度值(Assign fitness values)
SelCh=select('sus', Chrom, FitnV, GGAP); %选择
SelCh=recombin('xovsp', SelCh, 0.7); %重组
SelCh=mut(SelCh); %变异
variable=bs2rv(SelCh, FieldD); %子代个体的十进制转换
ObjVSel=variable.*variable; %计算子代的目标函数值
[Chrom ObjV]=reins(Chrom, SelCh, 1, 1, ObjV, ObjVSel); %重插入子代的新种群
variable=bs2rv(Chrom, FieldD);
gen=gen+1; %代计数器增加
%输出最优解及其序号,并在目标函数图像中标出,Y为最优解,I为种群的序号
[Y, I]=max(ObjV);hold on;
plot(variable(I), Y, 'bo');
trace(1, gen)=max(ObjV); %遗传算法性能跟踪
trace(2, gen)=sum(ObjV)/length(ObjV);
end
variable=bs2rv(Chrom, FieldD); %最优个体的十进制转换
hold on, grid;
plot(variable,ObjV,'b*');
figure(2);
plot(trace(1,:));
hold on;
plot(trace(2,:),'-.');grid
legend('解的变化','种群均值的变化')

上面是这个问题的MATLAB程序,你自己研究一下吧
运行的时候需要MATLAB遗传算法工具箱

6. 关于遗传算法

遗传算法(Genetic Algorithm,简称GA)是美国 Michigan大学的 John Golland提出的一种建立在自然选择和群体遗传学机理基础上的随机、迭代、进化、具有广泛适用性的搜索方法。现在已被广泛用于学习、优化、自适应等问题中。图4-1 给出了 GA搜索过程的直观描述。图中曲线对应一个具有复杂搜索空间(多峰空间)的问题。纵坐标表示适应度函数(目标函数),其值越大相应的解越优。横坐标表示搜索点。显然,用解析方法求解该目标函数是困难的。采用 GA时,首先随机挑选若干个搜索点,然后分别从这些搜索点开始并行搜索。在搜索过程中,仅靠适应度来反复指导和执行 GA 搜索。在经过若干代的进化后,搜索点后都具有较高的适应度并接近最优解。

一个简单GA由复制、杂交和变异三个遗传算子组成:

图4-2 常规遗传算法流程图

7. 什么是遗传算法

遗传算法是模拟自然界中按“优胜劣汰”法则进行进化过程而设计的算法。Bagley和Rosengerg于1967年在他们的博士论文中首先提出了遗传算法的概念。1975年Holland出版的专着奠定了遗传算法的理论基础。如今遗传算法不但给出了清晰的算法描述,而且也建立了一些定量分析的结果,在众多领域得到了广泛的应用,如用于控制(煤气管道的控制)、规划(生产任务规划)、设计(通信网络设计)、组合优化(TSP问题、背包问题)以及图像处理和信号处理等。

8. 为什么说遗传算法 是准三维路径

#include "stdafx.h"
#include "stdio.h" //标准输入输出库
#include "stdlib.h" //标准函数库
#include "time.h"
#include "iostream.h"
#include "iomanip.h"
#include "math.h" //数学函数库
#define MAX 1 //设定求最大适应值
#define MIN 2
#define CHROMLENGTH 15 //染色体长度,注意编码变化时,要随时修改
#define MAXNUM 1000
#define Cmax 30 //估计最大值
#define Cmin 0 //估计最小值
int PopSize = 150; //每代最大个体数
int FunctionMode = MIN;
double m_fPc = 0.9; //交叉概率
double m_fPm = 0.009; //变异概率
int MaxGeneration = 20; //最大世代数
int d[150][15]; //找到染色体并拷贝到这个数组中
int s[150][15];
int generation; //世代数
int Best_Index; //最好个体下标
int Worst_Index; //最坏个体下标
struct indivial //定义个体数据结构
{
double chrom[CHROMLENGTH+1]; //染色体
double value; //函数值
double fitness; //适应度
};
struct indivial
BestIndivial; //当代最佳个体
struct indivial
WorstIndivial;
struct indivial
Group[150]; //种群
double Random(double Low, double High)//本函数实现随机产生Low-High之间的实数 .意思:随机
{
return((double)rand()/RAND_MAX)*(High-Low)+Low;
}
double Max(double a, double b)
{
if(a>=b) return a;
else return b;
}
void GenerateInitialPopulation()//种群初始化,二进制编码初始化其中'1'表示路径顶点在最短路径中,'0'则反之
{
int i,j;

for(i = 0; i < PopSize; i++)
{
for(j = 1; j < CHROMLENGTH-2; j++)
{
Group[i].chrom[j] = (int)(Random(1,10)

9. 遗传算法怎么回事

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型: 遗传算法式中为决策变量,为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。b)个体评价:计算群体P(t)中各个个体的适应度。c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。f)终止条件判断:若tT,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算

阅读全文

与遗传算法图像为什么是阶梯相关的资料

热点内容
组织胚胎学pdf 浏览:844
linux查看发包 浏览:496
加密货币交易所暴利时代 浏览:824
歌词滚动效果android 浏览:14
程序员一天的六场战斗 浏览:797
自制压缩泵的做法 浏览:622
androidstring变量 浏览:247
数学乘法速算法 浏览:986
压缩包制作后照片顺序怎么改 浏览:680
fibonacci数列算法 浏览:775
产品经理要和程序员吵架吗 浏览:252
grub2命令行 浏览:618
无法获取加密卡信息 浏览:774
云服务器网卡充值 浏览:509
编程就是软件 浏览:49
服务器如何添加权限 浏览:437
引用指针编程 浏览:851
手机加密日记本苹果版下载 浏览:64
命令行括号 浏览:176
java程序升级 浏览:490