1. 本人毕设做的图像分割,现要对传统分割算法进行改进(也就是创新),求大神帮忙想想应该如何改进
可以给你指导 也可以给你写这个
2. 分割市场理论的缺点
尽管分割市场理论解释了为什么不同到期期限的金融工具,其收益率将会有不同,但该理论有两个缺点。一:该理论假定具有不同到期期限的金融工具不能完全互相代替,但大量的事实证明具有相似特征的债券的收益率是一同变动的,具有很大的相关性。二:该理论没有解释为什么向上倾斜的利息收益曲线是一种通常的结果,因为几乎所有的利息收益曲线都是这种形状。
3. 图像分割的总结展望
对图像分割算法的研究已有几十年的历史,借助各种理论至今已提出了上千种各种类型的分割算法。尽管人们在图像分割方面做了许多研究工作。但由于尚无通用分割理论,因此现已提出的分割算法大都是针对具体问题的,并没有一种适合于所有图像的通用的分割算法。但是可以看出,图像分割方法正朝着更快速、更精确的方向发展,通过各种新理论和新技术结合将不断取得突破和进展。
4. xgboost的优缺点是
xgboost适用场景:分类回归问题都可以。优缺点如下:
1)在寻找最佳分割点时,考虑传统的枚举每个特征的所有可能分割点的贪心法效率太低,xgboost实现了一种近似的算法。大致的思想是根据百分位法列举几个可能成为分割点的候选者,然后从候选者中根据上面求分割点的公式计算找出最佳的分割点。
2)xgboost考虑了训练数据为稀疏值的情况,可以为缺失值或者指定的值指定分支的默认方向,这能大大提升算法的效率,paper提到50倍。
3)特征列排序后以块的形式存储在内存中,在迭代中可以重复使用;虽然boosting算法迭代必须串行,但是在处理每个特征列时可以做到并行。
4)按照特征列方式存储能优化寻找最佳的分割点,但是当以行计算梯度数据时会导致内存的不连续访问,严重时会导致cache miss,降低算法效率。paper中提到,可先将数据收集到线程内部的buffer,然后再计算,提高算法的效率。
5)xgboost 还考虑了当数据量比较大,内存不够时怎么有效的使用磁盘,主要是结合多线程、数据压缩、分片的方法,尽可能的提高算法的效率。
5. 传统的图像分割方法有哪些
1.基于阈值的分割方法
灰度阈值分割法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。阈值分割方法实际上是输入图像f到输出图像g的变化
其中,T为阈值;对于物体的图像元素,g(i,j)=1,对于背景的图像元素,g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定一个适合的阈值就可准确地将图像分割开来。阈值确定后,阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。
阈值分割的优点是计算简单、运算效率较高、速度快。在重视运算效率的应用场合(如用于软件实现),它得到了广泛应用。
2.基于区域的分割方法
区域生长和分裂合并法是两种典型的串行区域技术,其分割过程后续步骤的处理要根据前面步骤的结果进行判断而确定。
(1)区域生长
区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。
(2)区域分裂合并
区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标提取。分裂合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,实现目标提取。分裂合并的假设是对于一幅图像,前景区域是由一些相互连通的像素组成的,因此,如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可得到前景目标。
3.基于边缘的分割方法
基于边缘的分割方法是指通过边缘检测,即检测灰度级或者结构具有突变的地方,确定一个区域的终结,即另一个区域开始的地方。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。
4.基于特定理论的分割方法
图像分割至今尚无通用的自身理论。随着各学科新理论和新方法的提出,出现了与一些特定理论、方法相结合的图像分割方法,主要有:基于聚类分析的图像分割方法、基于模糊集理论的分割方法等。
5.基于基因编码的分割方法
基于基因编码的分割方法是指把图像背景和目标像素用不同的基因编码表示,通过区域性的划分,把图像背景和目标分离出来的方法。该方法具有处理速度快的优点,但算法实现起来比较难。
6.基于小波变换的分割方法
小波变换是近年来得到广泛应用的数学工具,它在时域和频域都具有良好的局部化性质,并且小波变换具有多尺度特性,能够在不同尺度上对信号进行分析,因此在图像处理和分析等许多方面得到应用。
基于小波变换的阈值图像分割方法的基本思想是首先由二进小波变换将图像的直方图分解为不同层次的小波系数,然后依据给定的分割准则和小波系数选择阈值门限,最后利用阈值标出图像分割的区域。整个分割过程是从粗到细,由尺度变化来控制,即起始分割由粗略的L2(R)子空间上投影的直方图来实现,如果分割不理想,则利用直方图在精细的子空间上的小波系数逐步细化图像分割。分割算法的计算会与图像尺寸大小呈线性变化。
7.基于神经网络的分割方法
近年来,人工神经网络识别技术已经引起了广泛的关注,并应用于图像分割。基于神经网络的分割方法的基本思想是通过训练多层感知机来得到线性决策函数,然后用决策函数对像素进行分类来达到分割的目的。这种方法需要大量的训练数据。神经网络存在巨量的连接,容易引入空间信息,能较好地解决图像中的噪声和不均匀问题。选择何种网络结构是这种方法要解决的主要问题。
6. “DES”和“AES”算法的比较,各自优缺点有哪些
DES算法优点:DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。
DES算法缺点:
1、分组比较短。
2、密钥太短。
3、密码生命周期短。
4、运算速度较慢。
AES算法优点:
1、运算速度快。
2、对内存的需求非常低,适合于受限环境。
3、分组长度和密钥长度设计灵活。
4、 AES标准支持可变分组长度,分组长度可设定为32比特的任意倍数,最小值为128比特,最大值为256比特。
5、 AES的密钥长度比DES大,它也可设定为32比特的任意倍数,最小值为128比特,最大值为256比特,所以用穷举法是不可能破解的。
6、很好的抵抗差分密码分析及线性密码分析的能力。
AES算法缺点:目前尚未存在对AES 算法完整版的成功攻击,但已经提出对其简化算法的攻击。
(6)传统分割算法缺点扩展阅读:
高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。
这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。
7. RSA和DES算法的优缺点、比较
DES算法:
优点:密钥较短,加密处理简单,加解密速度快,适用于加密大量数据的场合。
缺点:密钥单一,不能由其中一个密钥推导出另一个密钥。
RSA算法:
优点:应用广泛,加密密钥和解密密钥不一样,一般加密密钥称为私钥。解密密钥称为公钥,私钥加密后只能用公钥解密,,当然也可以用公钥加密,用私钥解密。
缺点:密钥尺寸大,加解密速度慢,一般用来加密少量数据,比如DES的密钥。
(7)传统分割算法缺点扩展阅读:
安全性
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。RSA 的一些变种算法已被证明等价于大数分解。
不管怎样,分解n是最显然的攻击方法。人们已能分解多个十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。
8. 传统优化算法有哪些不足
(1)一般对目标函数都有较强的限制要求
9. 用于数据挖掘的分类算法有哪些,各有何优劣
常见的机器学习分类算法就有,不常见的更是数不胜数,那么我们针对某个分类问题怎么来选择比较好的分类算法呢?下面介绍一些算法的优缺点:
1. 朴素贝叶斯
比较简单的算法,所需估计的参数很少,对缺失数据不太敏感。如果条件独立性假设成立,即各特征之间相互独立,朴素贝叶斯分类器将会比判别模型,如逻辑回归收敛得更快,因此只需要较少的训练数据。就算该假设不成立,朴素贝叶斯分类器在实践中仍然有着不俗的表现。如果你需要的是快速简单并且表现出色,这将是个不错的选择。其主要缺点现实生活中特征之间相互独立的条件比较难以实现。
2. 逻辑回归
模型训练时,正则化方法较多,而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树与支持向量机相比,逻辑回归模型还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法)。如果你需要一个概率架构(比如简单地调节分类阈值,指明不确定性,获得置信区间),或者你以后想将更多的训练数据快速整合到模型中去,逻辑回归是一个不错的选择。
3. 决策树
决策树的分类过程易于解释说明。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分。它的一个缺点就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点是容易过拟合,但这也就是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是多分类问题的赢家(通常比支持向量机好上那么一点),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以随机森林相当受欢迎。
4. 支持向量机
高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
但是,好的数据却要优于好的算法,设计优良特征比优良的算法好很多。假如你有一个超大数据集,那么无论你使用哪种算法可能对分类性能都没太大影响(此时就根据速度和易用性来进行抉择)。
如果你真心在乎准确率,你一定得尝试多种多样的分类器,并且通过交叉验证选择最优。