导航:首页 > 源码编译 > 树匹配算法

树匹配算法

发布时间:2022-08-20 21:42:15

算法有哪些分类

算法分类编辑算法可大致分为:

基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

⑵ C语言中基本的几种算法有哪些越多越好!就像打擂台算法'冒泡排序法等等...

排序算法
冒泡排序
选择排序
快速排序
高精度运算
存储方法
加法运算
减法运算
乘法运算
扩大进制数
习题与练习
搜索算法
枚举算法
深度优先搜索
广度优先搜索
8数码问题
n皇后问题
搜索算法习题
枚举法习题
聪明的打字员
量水问题
染色问题
跳马问题
算24点
图论算法
最小生成树算法(Prim算法)
单源最短路径算法(Dijkstra算法)
任意结点最短路径算法(Floyd算法)
求有向带权图的所有环
Bellman-Ford算法
计算图的连通性
计算最佳连通分支
计算拓扑序列
图论算法习题
网络建设问题
最短变换问题
挖地雷
乌托邦城市
乌托邦交通中心
动态规划
最短路径问题
动态规划概念
骑士游历问题
最长递增子序列
合唱队形
石子合并问题
能量项链
0/1背包问题
开心的金明
金明的预算方案
加分二叉树
字串编辑距离
花瓶插花
凸多边形三角划分
快餐店

编程语言都有哪些算法

(一)基本算法 : 1.枚举 2.搜索: 深度优先搜索 广度优先搜索 启发式搜索 遗传算法 (二)数据结构的算法 (三)数论与代数算法 (四)计算几何的算法:求凸包 (五)图论 算法: 1.哈夫曼编码 2.树的遍历 3.最短路径 算法 4.最小生成树 算法 5.最小树形图 6.网络流 算法 7.匹配算法 (六)动态规划 (七)其他: 1.数值分析 2.加密算法 3.排序 算法 4.检索算法 5.随机化算法

希望采纳

⑷ 有关匹配和排序的算法,高手帮帮忙哈

一、插入排序(Insertion Sort)
1. 基本思想:
每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。
2. 排序过程:
【示例】:
[初始关键字] [49] 38 65 97 76 13 27 49
J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
J=6(13) [13 38 49 65 76 97] 27 49
J=7(27) [13 27 38 49 65 76 97] 49
J=8(49) [13 27 38 49 49 65 76 97]

Procere InsertSort(Var R : FileType);
//对R[1..N]按递增序进行插入排序, R[0]是监视哨//
Begin
for I := 2 To N Do //依次插入R[2],...,R[n]//
begin
R[0] := R[I]; J := I - 1;
While R[0] < R[J] Do //查找R[I]的插入位置//
begin
R[J+1] := R[J]; //将大于R[I]的元素后移//
J := J - 1
end
R[J + 1] := R[0] ; //插入R[I] //
end
End; //InsertSort //

二、选择排序
1. 基本思想:
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 〔38 65 97 76 49 27 49]
第二趟排序后 13 27 〔65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
第四趟排序后 13 27 38 49 [49 97 65 76]
第五趟排序后 13 27 38 49 49 [97 97 76]
第六趟排序后 13 27 38 49 49 76 [76 97]
第七趟排序后 13 27 38 49 49 76 76 [ 97]
最后排序结果 13 27 38 49 49 76 76 97

Procere SelectSort(Var R : FileType); //对R[1..N]进行直接选择排序 //
Begin
for I := 1 To N - 1 Do //做N - 1趟选择排序//
begin
K := I;
For J := I + 1 To N Do //在当前无序区R[I..N]中选最小的元素R[K]//
begin
If R[J] < R[K] Then K := J
end;
If K <>; I Then //交换R[I]和R[K] //
begin Temp := R[I]; R[I] := R[K]; R[K] := Temp; end;
end
End; //SelectSort //

三、冒泡排序(BubbleSort)
1. 基本思想:
两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。
2. 排序过程:
设想被排序的数组R〔1..N〕垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
【示例】:
49 13 13 13 13 13 13 13
38 49 27 27 27 27 27 27
65 38 49 38 38 38 38 38
97 65 38 49 49 49 49 49
76 97 65 49 49 49 49 49
13 76 97 65 65 65 65 65
27 27 76 97 76 76 76 76
49 49 49 76 97 97 97 97

Procere BubbleSort(Var R : FileType) //从下往上扫描的起泡排序//
Begin
For I := 1 To N-1 Do //做N-1趟排序//
begin
NoSwap := True; //置未排序的标志//
For J := N - 1 DownTo 1 Do //从底部往上扫描//
begin
If R[J+1]< R[J] Then //交换元素//
begin
Temp := R[J+1]; R[J+1 := R[J]; R[J] := Temp;
NoSwap := False
end;
end;
If NoSwap Then Return//本趟排序中未发生交换,则终止算法//
end
End; //BubbleSort//

四、快速排序(Quick Sort)
1. 基本思想:
在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49〕
第一次交换后 〔27 38 65 97 76 13 49 49〕
第二次交换后 〔27 38 49 97 76 13 65 49〕
J向左扫描,位置不变,第三次交换后 〔27 38 13 97 76 49 65 49〕
I向右扫描,位置不变,第四次交换后 〔27 38 13 49 76 97 65 49〕
J向左扫描 〔27 38 13 49 76 97 65 49〕
(一次划分过程)

初始关键字 〔49 38 65 97 76 13 27 49〕
一趟排序之后 〔27 38 13〕 49 〔76 97 65 49〕
二趟排序之后 〔13〕 27 〔38〕 49 〔49 65〕76 〔97〕
三趟排序之后 13 27 38 49 49 〔65〕76 97
最后的排序结果 13 27 38 49 49 65 76 97
各趟排序之后的状态

Procere Parttion(Var R : FileType; L, H : Integer; Var I : Integer);
//对无序区R[1,H]做划分,I给以出本次划分后已被定位的基准元素的位置 //
Begin
I := 1; J := H; X := R[I] ;//初始化,X为基准//
Repeat
While (R[J] >;= X) And (I < J) Do
begin
J := J - 1 //从右向左扫描,查找第1个小于 X的元素//
If I < J Then //已找到R[J] 〈X//
begin
R[I] := R[J]; //相当于交换R[I]和R[J]//
I := I + 1
end;
While (R[I] <= X) And (I < J) Do
I := I + 1 //从左向右扫描,查找第1个大于 X的元素///
end;
If I < J Then //已找到R[I] >; X //
begin R[J] := R[I]; //相当于交换R[I]和R[J]//
J := J - 1
end
Until I = J;
R[I] := X //基准X已被最终定位//
End; //Parttion //

Procere QuickSort(Var R :FileType; S,T: Integer); //对R[S..T]快速排序//
Begin
If S < T Then //当R[S..T]为空或只有一个元素是无需排序//
begin
Partion(R, S, T, I); //对R[S..T]做划分//
QuickSort(R, S, I-1);//递归处理左区间R[S,I-1]//
QuickSort(R, I+1,T);//递归处理右区间R[I+1..T] //
end;
End; //QuickSort//

五、堆排序(Heap Sort)
1. 基本思想:
堆排序是一树形选择排序,在排序过程中,将R[1..N]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])

堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
3. 排序过程:
堆排序正是利用小根堆(或大根堆)来选取当前无序区中关键字小(或最大)的记录实现排序的。我们不妨利用大根堆来排序。每一趟排序的基本操作是:将当前无序区调整为一个大根堆,选取关键字最大的堆顶记录,将它和无序区中的最后一个记录交换。这样,正好和直接选择排序相反,有序区是在原记录区的尾部形成并逐步向前扩大到整个记录区。
【示例】:对关键字序列42,13,91,23,24,16,05,88建堆

Procere Sift(Var R :FileType; I, M : Integer);
//在数组R[I..M]中调用R[I],使得以它为完全二叉树构成堆。事先已知其左、右子树(2I+1 <=M时)均是堆//
Begin
X := R[I]; J := 2*I; //若J <=M, R[J]是R[I]的左孩子//
While J <= M Do //若当前被调整结点R[I]有左孩子R[J]//
begin
If (J < M) And R[J].Key < R[J+1].Key Then
J := J + 1 //令J指向关键字较大的右孩子//
//J指向R[I]的左、右孩子中关键字较大者//
If X.Key < R[J].Key Then //孩子结点关键字较大//
begin
R[I] := R[J]; //将R[J]换到双亲位置上//
I := J ; J := 2*I //继续以R[J]为当前被调整结点往下层调整//
end;
Else
Exit//调整完毕,退出循环//
end
R[I] := X;//将最初被调整的结点放入正确位置//
End;//Sift//

Procere HeapSort(Var R : FileType); //对R[1..N]进行堆排序//
Begin
For I := N Div Downto 1 Do //建立初始堆//
Sift(R, I , N)
For I := N Downto 2 do //进行N-1趟排序//
begin
T := R[1]; R[1] := R[I]; R[I] := T;//将当前堆顶记录和堆中最后一个记录交换//
Sift(R, 1, I-1) //将R[1..I-1]重成堆//
end
End; //HeapSort//

六、几种排序算法的比较和选择
1. 选取排序方法需要考虑的因素:
(1) 待排序的元素数目n;
(2) 元素本身信息量的大小;
(3) 关键字的结构及其分布情况;
(4) 语言工具的条件,辅助空间的大小等。
2. 小结:
(1) 若n较小(n <= 50),则可以采用直接插入排序或直接选择排序。由于直接插入排序所需的记录移动操作较直接选择排序多,因而当记录本身信息量较大时,用直接选择排序较好。
(2) 若文件的初始状态已按关键字基本有序,则选用直接插入或冒泡排序为宜。
(3) 若n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序。 快速排序是目前基于比较的内部排序法中被认为是最好的方法。
(4) 在基于比较排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程,由此可以证明:当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlog2n)的时间。
(5) 当记录本身信息量较大时,为避免耗费大量时间移动记录,可以用链表作为存储结构。

⑸ 数据结构与算法中,树一般会应用在哪些方面为什么

数据结构就不多说了,树以递归性质这一对计算机而言最普遍的描述结构简直贯穿始终。查找树字典树四叉树哪个都是树的实际应用。除了低维结构不用树描述(其实一维结构也可以看成是退化后的树)。

算法层面,树基本上到处都是(当然有些时候是隐性的)。计算机执行指令是线性的,程序代码也是顺序的,是个一维结构,一旦需要解决高维问题,利用栈、队列等一维基础结构所能做到的只有树,而树则可以用来描述高维逻辑,起到了个桥梁作用。

算法举例如下。
状态空间遍历类:DFS、BFS

决策类:各种自动机(特例还有退化为一位情况的KMP)、贪心、分治、动态规划(同属状态空间遍历)、匹配
图与流:寻路(最短路)、生成树

应用举例就更多了,例如XML、DOM树、编译器中的模式识别和语法树、JSON数据传递、磁盘路径结构……

树的普遍取决于它的结构与通常解决问题的算法的一致性和结构简单严谨:递归定义、拓扑有序(无环)、实现简单。当面临高维状态时,其它结构的处理方式几乎一定不如转化为树来的简单,所以就成为了组织一维实现与高维逻辑中的桥梁。

⑹ 数据结构匹配算法如何添加成程序

1、算法有啦一个大致的雏形后,想清楚算法的流程,然后先将主程序打好,细节先用过程与函数代替。
2、然后再完善细节部分。
3、最后构造一些数据测试。
建议构造3种数据。
第一种随机生成的大数据,以检验程序在平均情况下的时间效率。
第二种是人工构造的奇葩/猥琐数据,且最好能确定答案,以检验其正确性,比如贪心的一些可能的反例。
最后一种是人工构造的特殊数据,比如,在有关树的题目中,将输入中的树退化成一条链。

程序员必须知道的10个算法和数据结构有哪些

算法
图搜索 (广度优先、深度优先)深度优先特别重要
排序
动态规划
匹配算法和网络流算法
正则表达式和字符串匹配
数据结构
图 (树尤其重要)
Map

栈/队列
Tries | 字典树
额外推荐
贪婪算法

⑻ 求解:图论中常见的最短路径算法有几种都是什么

主要是有三种、、

第一种是最直接的贪心dijkstra算法、、可以利用堆数据结构进行优化、、缺点就是不能求有负权的最短路与判断负环、、

第二种是bellman-ford算法、、根据松弛操作的性质是可以来判断负环的、、时间复杂度是O(nm)的、、

第三种是SPFA算法、、把他单独拿出来作为一种算法并不是非常好的、、他的实质应该是上面的bellman-ford算法的队列优化时间复杂度更低、O(KE)、K的值约等于2、、

⑼ 平衡二叉树的各种算法实现

多值结点平衡二叉树的结构及算法研究
1引言
传统的AV1.树是一种应用较为广泛的数据结构,适合”几组织在内存中的较小索引.它的
每个结l从上存储有一个关键字、一个平衡因子和两个指针项,山”几它是一棵接近”几理想状态的
平衡二叉树,所以AV1.树具有很高的查询效率.但正如任何事物都具有两而性一样,AV1.树同
样存在比较严重的缺l从,一是存储效率比较低:真正有用的关键字在结l从上所,片的空间比例较
小,而作为辅助信息的平衡因子和指针却,片据较大的空间;二是额外运算量比较大:当有结l从
被插入或删除而导致AV1.树不平衡时,AV1.树就需要进行调整而保持它的平衡性,山”几每个
结l从上只有一个关键字,所以任何一次的数据插入或删除都有可能导致AV1.树的平衡调整,
这种频繁的调整运算将大大降低AV1.树的存取效率.为解决以上问题,结合T3树每个结l从可
以存储多个关键字项的优l侧}l,木文提出了多值结l从平衡二叉树(简称MAV1.树),它的主要特
点在”几每个MAV1.树的结l从都存储有多个关键字项,而其它信息仍与AV1.树一样,即一个平
衡因子和两个指针项.
2 MAV1.树结构描述
MAV1.树仍旧是一种平衡二叉树,它的整体树型结构和算法也是建立在传统的平衡二叉
树基础之上的.MAV1.树的特征在”几它的每个结l从都可以存储多个关键字(较理想的取值大约
在20} 50个之间).用C++语言描述的MAV1.树结l从结构如卜:
struct NodeStruct
int IJ1emsOnNode;
int bf:
struct NodPStruct*lch;ld:
//一结点中项的数目
//平衡因子
//夕.子
struct NodeStruct * rchild:
}lemType }lemsi Max}lem} ;//结点中的项数组
Node T:
在这种结构中.ElemsOnNode反映的是“当前状态卜”该结l从中关键字项的个数.当在此结
点插入一个关键字时.FlemsOnNode值加1.当删除一个关键字时.则FlemsOnNode值减1.每个
结l从上可存储的关键字个数介J几1 } M axElem之间.bf为平衡因r.其作用等同J几AV1.树的平
衡因r. MAV1.树的任一结l从的平衡因r只能取一1 ,0和1.如果一个结l从的平衡因r的绝对
值大”几1.则这棵树就失去了平衡.需要做平衡运算保持平衡.lehild和:child分别为指向左右
J"树根结0的指针.Flems[ i]为结0中第i个关键字项.Flems} MaxFlem”是一个按升序排列的
关键字数组.具体的MAV1.树结l从结构如图1所示.
}lemsOnNode一h‘一* leh;ld一
图1
reh击3
}lemsi 0}一
树结点结构
}lemsi Max}lem}
MAVT
MAV1.树的结构特l从使它比AV1.树具有更高的存储效率.在AV1.树或MAV1.树中.实际
有用的信急只有关键字.1f1! ElemsOnNode ,bf ,lehild和:child都是为了构建树型结构If1J不得不添
加的辅助信急. MAV1.树就是通过减小这些辅助信急的比例来获得较高的存储效率.山MAV1.
树结l从的定义可以看出:FlemsOnNode和bf为int型.各,片4个字节长度.指针型的lchild和
rchild也各,片4个字节长度.在以上四项信急中.AV1.树结l从除了没有ElemsOnNode外.其余和
MAV1.树相同.现假设关键字长度为24字节.M axFl二值定为50.则对AV1.树来说.它的结l从
长度为36字节.其中辅助信h,长度为12字节;If}J MAV1.树的结l从长度是1. 2K字节.其中辅助
信急长度为16字节.山此可以看出.MAV1.树在存储时.结l从中辅助信急长度,片整个结l从长度
的比例是很小的.它对存储空间的利用效率比 AV1.树要高.这一l从对”几主要而向内存应用的
MAV1.树来说是非常重要的.
在实际的应用中.当MAV1.树作为数据库索引结构时.为进一步节约内存空间.结l从中Fl-
emType的结构可根据实际需要作不同的定义.
( 1)当排序关键字较短时.可以直接将数据库中的关键字值拷贝到索引文件中.这样
MAV1.树既有较快的运行速度又不会,片用太大的空间.此时ElemType定义如卜
struct IdxRlemStruct
{
int RecPos://金己录号
KeyType Key://关键字
}R1emType;
( 2}当排序关键字较长时.如果直接将数据库中的关键字值拷贝到索引文件中会,片据较大
的空间.此时可以采用只存储关键字地址的形式.这样不管关键字有多长.映射到MAV1.树后
都只,片据一个指针的固定长度.这种以时间换空间的方法比较适合内存容量有限的情况.此时
ElemType定义如卜
struct Tdxl?lemStruct
int RecPos:
char * Key
R1emType;
//记录号
//关键字指钊
3基于MAUI.树的运算
MAUI.树的基木运算.包括MAUI.树的建立、记录的插入、删除、修改以及查询.这些算法
与基J几AVI.树的算法相似.都建立在一叉查询和平衡算法基础上.
3. 1 MAVI,树的平衡运算
如果在一棵原木是平衡的MAUI.树中插入一个新结l从.造成了不平衡.此时必须调整树的
结构.使之平衡化“21 .MAUI.树的平衡算法与AVI.树的平衡算法是相同的.但山J几MAUI.树的
每个结l从中都存储有多个关键字.所以在关键字个数相同的情况卜. MAUI.树的应用可以大大
减少平衡运算的次数.例如.假设具有n个关键字的待插入序列在插入过程中有5%(根据随
机序列特l从的不同.此数值会有所差异.这里以比较保守的5%为例)的新产生结l从会导致一
叉树出现不平衡.对AVI.树来说.山”几需要为每个关键字分配一个结l从.所以在整个插入过程
中做平衡的次数为n * 5%;对J几MAUI.树.设MAUI.树中M axFl二的值被定义为k(k为大J几1
的正整数少,则平均每k次的数据插入才会有一个新结l从产生,所以在整个插入过程中需做平
衡的次数仅为(nlk) * 5%.即在M axFl二取值为k的情况卜.对”几相同的待插入关键字序列.
在插入过程中MAUI.树用J几平衡运算的开销是AVI.树的1/ k.
3. 2数据查找
在MAUI.树上进行查找.是一个从根结l从开始.沿某一个分支逐层向卜进行比较判等的过
程.假设要在MAUI.树上查找的值为GetKey.查找过程从根结l从开始.如果根指针为NU1.1..则
查找失败;否则把要查找的值GetKey与根结l从关键字数组中的最小项Elems [ 0]进行比较.如
果GetKev小”几当前结i最小关键字.则递归查找左r树;如果GetKey'大”几Elems [ 0].则将
GetKey'与根结0关键字数组中的最大项Fletns} MaxFl二一1]进行比较.如果GetKey'大”几当前
结l从最大关键字.则递归查找右r树;否则.对当前结l从的关键字数组进行查找(山”几是有序序
列.可以采用折半查找以提高效率).如果有与GetKey'相匹配的值.则查找成功.返回成功信
息,7{报告查找到的关键字地址.
3. 3数据插入
数据插入是构建MAV1.树的基础.设要在MAV1.树*T上插入一个新的数据兀素GetKev,
其递归算法描述如卜:
(1)若*T为空树.则申清一新结} ' Elems} MaxElem}.将GetKey'插入到Flems[ 0]的位置.树
的深度增1.
(2)若*T未满.则在*T中找到插入位置后将GetKey'插入.JI在插入后保持结l从中的各
关键项有序递增.若己存在与GetKev相同的项.则不进行插入.
(3)如果*T为满结l从目一GetKey'值介”几Flems[ 0]和Flems} MaxFlem]之间.则在*T中找到
GetKev的插入位置posit ion.山”几*T木身就是满结l从.所以GetKev的插入必然会将原来*T中
的某个数据挤出去JI卜降到r树中.根据插入位置position的不同.分以卜几种情况处理:若*
T中存在与C etl} e`'相同的项.则不进行插入;若插入位置在*T结ii的前半部分(即position <
=MaxFlem/ 2).则将Flems[ 1]到Fletns} position”的数据依次左移一位.再把GetKey插入到Elems
} MaxFlem”中position的位置.Ifn原来*T中最左边项数据将被挤入到*T的左r树中.考察此
数据的特l从.它必然大”几*T左r树中的任一数据项.所以此时不需要作任何的额外运算.直
接将此数据插入到*T左r树根结i从的最右r孙位置处就可以了(见图2中插入,}} 11"后“1,>
的位置变化);若插入位置在*T结ii的后半部分(即position> MaxFlem/ 2).则将Fletns} posi-
tion}到Fletns} MaxFl二一2}的数据依次右移一位.再把GetKev插入到*T结0中position的位
置.与前一种情况类似.结l从中最右边被挤出的项将被插入到*T的右r树根结l从的最左r孙
的位置(见图2中插入“25"后" 30"的位置变化).
插入,"}i”插入”zs0
}o i is i }a
s}土 s
图2
满结点插入数据的过程
(4)若GetKey的值小”几T的最小项值.则将GetKey递归插入到T的左r树中.即在递归调
用时GetKey值不变Ifn T= T->lehild.
(5)若GetKey的值大”几T的最大项值.则将GetKey递归插入到T的右r树中.即在递归调
用时GetKey值不变Ifn T= T->rehild.
4结束语
山J几MAV1.树的结l从中存储有多个关键字值.所以它具有较高的存储效率;对MAV l树进
行查找是_分查找和顺序查找的结合.其查询效率只略低”几AV1.树.血山”几MAV1.树的平衡
运算比AV1.树要少得多.所以MAV1.树有很优秀的综合运算效率.综上所述.在数据量大、内
存容量相对较小、数据增删运算比较频繁的情况卜.用MAV1.树作为常驻内存的索引结构是一
种理想的选择.

⑽ 矩阵求树的最大匹配

你这个难度有点大啊

阅读全文

与树匹配算法相关的资料

热点内容
狸窝pdf转换器 浏览:696
ajax调用java后台 浏览:904
活塞式压缩机常见故障 浏览:614
break算法 浏览:731
换电池的app是什么 浏览:771
单片机ad采样快速发送电脑 浏览:22
第五人格服务器错误是什么回事儿 浏览:467
查看手机谷歌服务器地址 浏览:191
python操作zookeeper 浏览:705
苹果手机dcim文件夹显示不出来 浏览:430
如何压缩文件夹联想电脑 浏览:583
程序员的学习之旅 浏览:440
apkdb反编译 浏览:922
雪花算法为什么要二进制 浏览:825
在文档中打开命令行工具 浏览:608
android图标尺寸规范 浏览:369
python实用工具 浏览:208
流量计pdf 浏览:936
科东加密认证价格 浏览:532
dos命令读文件 浏览:997