① 粒子群算法matlab程序无法运行
%% 清空环境
clear
clc
tic
%% 参数初始化
% 粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen = 200; % 进化次数
sizepop = 20; % 种群规模
Vmax = 1;
Vmin = -1;
popmax = 5;
popmin = -5;
%% 产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = 5 * rands(1,2); % 初始种群
V(i,:) = rands(1,2); % 初始化速度
% 计算适应度
fitness(i) = fun(pop(i,:)); % 染色体的适应度
end
% 找最好的染色体
[bestfitness bestindex] = min(fitness);
zbest = pop(bestindex,:); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
fitnesszbest = bestfitness; % 全局最佳适应度值
%% 迭代寻优
for i = 1:maxgen
for j = 1:sizepop
% 速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin;
%种群更新
pop(j,:) = pop(j,:) + 0.5*V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin;
% 自适应变异
if rand > 0.8
k = ceil(2*rand);
pop(j,k) = rand;
end
% 适应度值
fitness(j) = fun(pop(j,:));
end
% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
yy(i) = fitnesszbest;
end
toc
%% 结果分析
plot(yy);
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');
ylabel('适应度');
fun函数如下
function y = fun(x)
y = -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2)) - exp((cos(2*pi*x(1))+ cos(2*pi*x(2)))/2) + 20 + 2.71289;
② 我QQ是534193499,想向你请教matlab的粒子群算法
粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。 PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。
③ matlab 粒子群算法代码
目前混合整数规划是一个可研究的问题,这方面的论文也较多,有的是用四舍五入的方法取整,在matlab中用round函数可实现。也有用三角函数进行转化的,具体情况我不太清楚。另外你的问题有约束条件,在编程时需要加约束处理。
④ 粒子群算法用matlab做,要把粒子初始化为矩阵要怎么做
可以参考一下这段代码
%------给定初始化条件----------------------------------------------
c1=1.8; %学习因子1
c2=1.8; %学习因子2
WMax=1.6; %惯性权重
WMin=0.8; %惯性权重
MaxDT=100; %最大迭代次数
D=3; %搜索空间维数(未知数个数)
N=30; %初始化群体个体数目
XUp=20/(2^0.5); %初始化位移上限
XDown=-20/(2^0.5); %初始化位移下限
VUp=0.5; %初始化速度上限
VDown=0.0; %初始化速度下限
eps=10^(-6); %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------
x=((XUp-XDown).*rand(N,2*D)+XDown); %随机初始化位置
v=((VUp-VDown).*rand(N,2*D)+VDown); %随机初始化速度
⑤ matlab实现粒子群算法优化LQR法得不到最优解
PSO确实会存在得不到最优解的情况,因为严格意义上它不是全局最优的算法,而且在比较复杂的问题上,得不到最优解的情况很容易发现。
建议你增大种群大小,增加迭代次数。
⑥ matlab用粒子群算法求解方程组最优解
这关键是适应度函数的问题,你可以编写如下适应度函数:
F=|E(X1y1+X2y2)-0|+|D(X1y1+X2y2)-1|,F值越小越好,||指的是绝对值。
而变量你就选取X1和X2里的每个元素。比如X1=[x1,x2,x3];X2=[x4,x5,x6];你就可以设置PSO的变量为x1到x6这六个值。
答毕,不懂追问。
⑦ 求粒子群算法MATLAB完整代码
%% 清空环境
clear
clc
tic
%% 参数初始化
% 粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
maxgen = 200; % 进化次数
sizepop = 20; % 种群规模
Vmax = 1;
Vmin = -1;
popmax = 5;
popmin = -5;
%% 产生初始粒子和速度
for i = 1:sizepop
% 随机产生一个种群
pop(i,:) = 5 * rands(1,2); % 初始种群
V(i,:) = rands(1,2); % 初始化速度
% 计算适应度
fitness(i) = fun(pop(i,:)); % 染色体的适应度
end
% 找最好的染色体
[bestfitness bestindex] = min(fitness);
zbest = pop(bestindex,:); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
fitnesszbest = bestfitness; % 全局最佳适应度值
%% 迭代寻优
for i = 1:maxgen
for j = 1:sizepop
% 速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin;
%种群更新
pop(j,:) = pop(j,:) + 0.5*V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin;
% 自适应变异
if rand > 0.8
k = ceil(2*rand);
pop(j,k) = rand;
end
% 适应度值
fitness(j) = fun(pop(j,:));
end
% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
yy(i) = fitnesszbest;
end
toc
%% 结果分析
plot(yy);
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');
ylabel('适应度');
fun函数如下
function y = fun(x)
y = -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2)) - exp((cos(2*pi*x(1))+ cos(2*pi*x(2)))/2) + 20 + 2.71289;
⑧ 使用matlab粒子群算法求解以下函数,求主程序
这关键是适应度函数的问题,你可以编写如下适应度函数: F=|E(X1y1+X2y2)-0|+|D(X1y1+X2y2)-1|,F值越小越好,||指的是绝对值。 而变量你就选取X1和X2里的每个元素。比如X1=[x1,x2,x3];X2=[x4,x5,x6];你就可以设置PSO的变量为x1到x6这六个值...