导航:首页 > 源码编译 > 遗传算法适用于并行求解

遗传算法适用于并行求解

发布时间:2022-08-24 03:35:53

A. 遗传算法的特点

遗传算法具有十分顽强的鲁棒性[56,53],这是因为比起普通的优化搜索方法,它采用了许多独特的方法和技术,归纳起来,主要有以下几个方面。

遗传算法的处理对象不是参数本身,而是对参数集进行了编码的个体。此编码操作,使得遗传算法可直接对结构对象进行操作。所谓结构对象泛指集合、序列、矩阵、树、图、链和表等各种一维或二维甚至三维结构形式的对象。这一特点,使得遗传算法具有广泛的应用领域。比如:

①通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化;②通过对集合的操作,遗传算法可实现对规则集合或知识库的精炼而达到高质量的机器学习目的;③通过对树结构的操作用遗传算法可得到用于分类的最佳决策树;④通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理遗传算法可自动构造顺序控制系统。

如前所述许多传统搜索方法都是单点搜索算法,即通过一些变动规则,问题的解从搜索空间中的当前解(点)移到另一解(点)。这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的优解。相反,遗传算法是采用同时处理群体中多个个体的方法,即同时对搜索空间中的多个解进行评估,更形象地说,遗传算法是并行地爬多个峰。这一特点使遗传算法具有较好的全局搜索性能,减少了陷于局部优解的风险,同时这使遗传算法本身也十分易于并行化。

在标准的遗传算法中,基本上不用搜索空间的知识或其他辅助信息,无需导数或其他辅助信息,而仅用适应度函数值来评估个体,并在此基础上进行遗传操作。需要着重提出的是,遗传算法的适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。对适应度函数的惟一要求是,对于输入可计算出加以比较的正的输出。遗传算法的这一特点使它的应用范围大大扩展。

图7-1 基本遗传算法的框图

遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜索方向。在以后的章节中我们将会看到,遗传算法采用概率仅仅是作为一种工具来引导其搜索过程朝着搜索空间的更优化的解区域移动。因此虽然看起来它是一种盲目搜索方法,但实际上有明确的搜索方向。

遗传算法利用简单的编码技术和繁殖机制来表现复杂的现象,从而解决非常困难的问题。特别是由于它不受搜索空间的限制性假设的约束,不必要求诸如连续性、导数存在和单峰等假设,它能从离散的、多极值的、含有噪音的高维问题中以很大的概率找到全局最优解;其次,由于它固有的并行性,遗传算法非常适用于大规模并行计算。遗传算法目前已经在优化、机器学习和并行处理等领域得到了越来越广泛的应用。

B. 遗传算法<sup>[1,]</sup>

遗传算法,又称基因算法(Genetic Algorithm,简称GA),也是一种启发式蒙特卡洛优化算法。遗传算法最早是由Holland(1975)提出,它模拟了生物适者生存、优胜劣汰的进化过程,具有不依赖于初始模型的选择、不容易陷入局部极小、在反演过程中不用计算偏导数矩阵等优点。遗传算法最早由Stoffa和Sen(1991)用于地震波的一维反演,之后在地球物理资料的非线性反演中得到广泛的应用。GA算法对模型群体进行追踪、搜索,即模型状态通过模型群体传送,具有比模拟退火法更大、更复杂的“记忆”,潜力更大。

遗传算法在反演中的基本思路和过程是:

(1)将生物体看成模型,模型参数看成染色体,有多少个模型的参数就有多少个染色体。对每个模型的参数(染色体)用二进制进行编码,这个编码就是基因。

(2)随机生成一个模型群体(相当于生物的种群),然后在模型群体中进行繁殖,通过母本的选择、交换和变异等遗传操作产生下一代,然后保留较好基因,淘汰较差基因。

(3)通过一代一代的繁殖优胜劣汰的进化过程,最后所剩下的种群基本上都是最优的基因,种群趋于一致。所谓群体“一致”,即群体目标函数的方差或标准差很小,或者群体目标函数的均值接近于极值(可能是极大值或极小值),从而获得非线性反演问题所对应的最优解或近似最优解。

下面以一个实例来简述遗传算法的基本过程。

[例1]设m是正整数,且0≤m≤127,求方程φ(m)=m2的极大值。

这个例子极为简单,只有一个模型参数,因此只有一条染色体,目标函数的极值是极大值(此例子来自阮百尧课件)。遗传算法通过以下7个步骤来实现:

(1)模型参数二进制编码。

每个模型参数就是一条染色体,把十进制的模型参数表示为二进制,这就是基因。首先确定二进制码的长度(基因的长度):

2N=[mmax(i)-mmin(i)]/Δm(i) (8.20)

其中:N为第i条染色体基因的长度(也就是第i个模型参数的二进制码位数);[mmin(i),mmax(i)]为第i个模型参数的取值范围;Δm(i)为第i个模型参数的分辨率。这样就把模型参数离散化了,它只能按Δm(i)的整数倍变化。基因的长度按下式计算:

地球物理反演教程

其中:c为实数;N为基因长度,是整数;int[ ]为取整函数。上式表示如果c不是整数,那么基因长度N就是对c取整后加1,这样保证最小分辨率。

基因的编码按下式进行:

地球物理反演教程

其中:式(8.22)是编码公式;k为基因编码的十进制数,是整数;int[ ]为取整函数。把k转化为二进制就是基因的编码。解码是按照式(8.23)进行的。首先把一个基因的二进制编码转化为十进制数k,然后按式(8.23)可以计算出第i个模型参数m(i)的十进制值。

例如:电阻率参数ρ(1),它的变化范围为10~5000Ω·m,分辨率为2Ω·m,设当前参数ρ(1)=133Ω·m,按式(8.21)计算得

c=11.28482,N=12

所以二进制基因长度为13位。

利用式(8.22)计算基因编码k的十进制数:

k=int[(133-10)/2]=61

把它转化为二进制数为:000000111101。所以ρ(1)=133 的二进制基因编码为:000000111101。

解码过程就是把二进制基因编码变为十进制数k后用式(8.23)计算:

ρ(1)=10+61×2=132(Ω·m)

注意:基因编码并不是直接把电阻率值变为二进制。此外,133这个值在基因里不会出现,因为分辨率是2,所以表示为最接近的132。

对于[例1]问题来说,选分辨率为1,0~127用二进制编码需7位。

(2)产生初始模型种群。

生物繁殖进化需要一定数量的生物体种群,因此遗传算法开始时需要一定数量的初始模型。为保证基因的多样性,随机产生大量的初始模型作为初始种群,按照上面的编码方式进行编码。个体在模型空间中应分布均匀,最好是模型空间各代表区域均有成员。初始模型群体大,有利于搜索,但太大会增加计算量。

为保证算法收敛,在初始模型群体中,有时候应增加各位都为0和都为1的成员。遗传算法就是在这个初始模型种群的基础上进行繁殖,进化求解的。

对于[例1]问题来说,模型空间是0~127个数字,这样初始种群最多具有128个个体。为了简单,随机选择4个个体作为初始种群。初始种群的编码、目标函数值见表8.1。

表8.1 初始种群编码表

(3)模型选择。

为了生成新一代模型,需要选择较优的个体进行配对。生物进化按照自然选择、优胜劣汰的准则进行。对应地,遗传算法按照一定的准则来选择母本(两个),然后进行配对繁殖下一代模型,这个选择称为模型选择。模型配对最基本的方法是随机采样,用各模型的目标函数值对所有模型目标函数的平均值的比值定义繁殖概率,即

地球物理反演教程

其中:p(mi)为繁殖概率;φ(mi)为第i个模型的目标函数;φAVG为目标函数的平均值。对于极小化问题来说,规定目标函数值高于平均值的不传代;对于极大化问题来说,反之即可。

就[例1]来说,要求目标函数取极大值,所以规定目标函数小于平均值的模型不传代,大于它的可以传代。对第一代,为了防止基因丢失,可先不舍去繁殖概率小的模型,让它与概率大的模型配对。如:本例中70与56配对,101与15配对产生子代,见表8.2。

表8.2 基因交换表

(4)基因交换。

将配对的两个亲本模型的部分染色体相互交换,其中交换点可随机选择,形成两个新的子代(见表8.2)。两个染色体遗传基因的交换过程是遗传算法的“繁殖”过程,是母本的重组过程。

为了使染色体的基因交换比较彻底,Stoffa等人提出了一个交换概率px来控制选择操作的效果。如果px的值较小,那么交换点的位置就比较靠低位,这时的交换操作基本是低位交换,交换前后模型的染色体变化不是太大。如果px的值较大,那么交换点的位置就比较靠高位,此时的交换操作可以在较大的染色体空间进行,交换前后模型数值变化可以很大。

在[例1]中:15、101和56、70作为母本通过交换繁殖出子代5、6、111、120。所选择的基因交换位置见表8.2。有下划线的,是要交换的基因位置。

(5)更新。

母本模型和子本模型如何选择保留一定数量作为新的母本,就是模型更新。不同的策略会导致不同的结果。一般而言,若产生的新一代模型较好,则选择新一代模型而淘汰上一代模型。否则,则必须根据一定的更新概率pu来选择上一代模型来取代新一代中某些较劣的模型。

经过更新以后,繁殖时对子代再进行优胜劣汰的选择。对于极大值问题,大于目标函数平均值的子代可以繁殖,小于目标函数平均值的子代不能繁殖。由于新的种群能繁殖的个体数量减小了,所以要多繁殖几次,维持种群个体的数量保持平衡。

在[例1]中,子代较好,所以完全淘汰上一代模型,完全用子代作为新的母本。选择子代目标函数最大的两个模型进行繁殖,分别是111、120。

(6)基因变异。

在新的配对好的母本中,按一定比例随机选择模型进行变异,变异操作就是模拟自然界中的环境因素,就是按比较小的变异概率pm将染色体某位或某几位的基因发生突变(即将0变为1或将1变为0)。

变异操作的作用是使原来的模型发生某些变化,从而成为新的个体。这样可使群体增加多样性。变异操作在遗传算法中也起着至关重要的作用。实际上,由于搜索空间的性质和初始模型群体的优劣,遗传算法搜索过程中往往会出现所谓的“早熟收敛”现象,即在进化过程中早期陷入局部解而中止进化。采用合适的变异策略可提高群体中个体的多样性,从而防止这种现象的出现,有助于模型跳出局部极值。表8.3为[例1]的基因变异繁殖表。

表8.3 基因变异繁殖表

在[例1]中,用111、120分别繁殖两次,形成4个子代,维持种群数量平衡。随机选择120进行变异,变异的位数也是随机的。这里把它的第2位进行变异,即从1变为0,繁殖后形成子代为:70、110、121、127。可以看出新的子代比初始种群要好得多,其中甚至已经出现了最优解。如果对于地球物理的极小值问题,我们可以预先设置一个拟合精度,只要在种群中出现一个达到拟合精度的模型就可以终止反演了。

(7)收敛。

重复(3)~(6)的步骤,模型群体经多次选择、交换、更新、变异后,种群个体数量大小不变,模型目标函数平均值趋于稳定,最后聚集在模型空间中一个小范围内,则找到了全局极值对应的解,使目标函数最大或最小的模型就是全局最优模型。

对于具有多解性的地球物理反演问题来说,通过这一步有可能找到满足拟合精度的多个模型,对于实际反演解释、推断具有较高的指导意义。

遗传算法中的各种概率包括交换概率px、变异概率pm以及更新概率pu,这些参数的选择与设定目前尚无统一的理论指导,多数都视具体问题而定。Stoffa等(1991)的研究表明,适中的交换概率(px≈0.6)、较小的变异概率(pm≈0.01)和较大的更新概率(pu≈0.9),遗传算法的性能较优。

与模拟退火反算法相同,遗传算法与传统的线性反演方法相比,该方法具有:不依赖初始模型的选择、能寻找全局最小点而不陷入局部极小、在反演过程中不用计算雅克比偏导数矩阵等优点。另外,遗传算法具有并行性,随着并行计算和集群式计算机技术的发展,该算法将会得到越来越广泛的研究与应用。

但是遗传算法作为类蒙特卡洛算法同样需要进行大量的正演计算,种群个体数量越大,繁衍代数越多,则计算量越大。所以和前面的最小二乘法相比,速度不是它的优势。

C. 关于遗传算法的并行问题,求助,谢谢,每日一顶

Matlab里面实现并行很简单,只需要把for改成parfor就行了。首先需要启动并行机器人,电脑有几个CPU就能启用几个,超过CPU核心数会报错。1matlabpool local 2最后记得关闭1matlabpool close使用parfor需要注意,循环中间不能有迭代,只能是单纯的计算,比如计算目标函数值。

D. 为什么遗传算法能被广泛的应用到各个领域

遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。一、遗传算法的特点 1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。 2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。 3.遗传算法有极强的容错能力遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。 4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。 5.遗传算法具有隐含的并行性

E. 遗传算法为什么能求解npc问题,关键点在哪里

遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。

一、遗传算法的特点

1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。

这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。

2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。

由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。

3.遗传算法有极强的容错能力

遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。

4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。

这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。

5.遗传算法具有隐含的并行性

F. 并行遗传算法的简介

并行遗传算法,.指对遗传算法进行并行设计后的算法。遗传算法具有天生的并行性,根据算法复杂度,算法的结构可以有很多种并行设计方法。在当前多核处理器已经成为主流配置的大环境中,并行设计可以充分利用处理器资源,提高算法效率。

G. 遗传算法具体应用

1、函数优化

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。

2、组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

3、车间调度

车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。

从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。


(7)遗传算法适用于并行求解扩展阅读:

遗传算法的缺点

1、编码不规范及编码存在表示的不准确性。

2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。

3、遗传算法通常的效率比其他传统的优化方法低。

4、遗传算法容易过早收敛。

5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。

H. 并行遗传算法的并行形式

遗传算法具有天然的并行性,其并行形式有以下4类:
(1)个体适应度评价内部的并行性;
(2)种群中每个个体适应度评价的并行性;
(3)算法基本操作内部的并行性;
(4)基于种群分组的并行性

I. 遗传算法的优缺点

优点:

1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。

另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。

2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。

3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。

另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。

4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。

5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。

缺点:

1、遗传算法在进行编码时容易出现不规范不准确的问题。

2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。

3、遗传算法效率通常低于其他传统的优化方法。

4、遗传算法容易出现过早收敛的问题。

(9)遗传算法适用于并行求解扩展阅读

遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。

函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。

为了设置options,需要用到下面这个函数:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。

阅读全文

与遗传算法适用于并行求解相关的资料

热点内容
组管理命令 浏览:979
海南高德司机端是什么app 浏览:861
pid命令 浏览:888
一天一图学会python可视化 浏览:309
魔兽编辑文本命令串 浏览:497
android中view绘制 浏览:798
安卓机内存删除怎么恢复 浏览:331
Qt环境的编译软件放到linux 浏览:214
联创打印系统怎么连接服务器 浏览:935
杭州行政命令 浏览:160
如何查找服务器日志 浏览:801
加密的钥匙扣怎么写 浏览:579
文件夹更新不了怎么办 浏览:475
压缩机指示灯亮是什么原因 浏览:956
什么app订酒店半价 浏览:767
中老年解压神器 浏览:243
讯飞语音ttsandroid 浏览:468
腰椎压缩性骨折术后能坐车吗 浏览:507
python类装饰器参数 浏览:350
均线pdf微盘 浏览:793