⑴ 在哪可以看到NDK下gnu-libstdc++库的源代码
概括来说主要分为以下几种情况: 1. 代码的保护,由于apk的java层代码很容易被反编译,而C/C++库反汇难度较大。 2. 在NDK中调用第三方C/C++库,因为大部分的开源库都是用C/C++代码编写的。 3. 便于移植,用C/C++写的库可以方便在其他的嵌入式平
⑵ linux android下编译c++,不识别iostream,string等标准头文件
你是否使用Android的 NDK 进行编译,你需要设置NDK的路径才行。
⑶ 如何调试android NDK 交叉编译的cpp文件
主要讲一下具体的步骤,具体的ndk指令我就不说了,贴的文章都有:
首先是写一个.java文件,本例中是HprofDumper.java
具体如下:
public class HprofDumper {
public native boolean hprofDumper(String filename, String outname);
}
然后用命令javac HprofDumper.java 生成.class文件
再用javah HprofDumper 生成相应的.h文件
生成的.h文件如下
#include
#ifndef _Included_HprofDumper
#define _Included_HprofDumper
#ifdef __cplusplus
extern "C" {
#endif
JNIEXPORT jboolean JNICALL Java_HprofDumper_hprofDumper
(JNIEnv *, jobject, jstring, jstring);
#ifdef __cplusplus
}
#endif
#endif
然后只需要在对应的.cpp文件完成相应函数即可,核心代码如下:
#include "HprofDumper.h"
#include "hprof.h"
JNIEXPORT jboolean JNICALL Java_HprofDumper_hprofDumper
(JNIEnv *env, jobject obj, jstring in_file, jstring out_file)
{
const char *filename = env->GetStringUTFChars(in_file, 0);
const char *outname = env->GetStringUTFChars(out_file, 0);
return hprof_mp(filename, outname);
}
其中hprof_mp是纯c++代码,引入即可。
有一点需要注意,标红了已经,就是生成的.h文件函数并没具体形参名字,只有形参类型,在.cpp文件中要加入相应的形参名字,本例为env、 obj、 in_file和out_file。
还有一点c和c++的区别,就是env的使用。
本例中C++为env->GetStringUTFChars(in_file, 0);
如果是C就应该改为(env)->GetStringUTFChars(env,in_file, 0);
调用Java类型 : C中调用Java中的String类型为 jstring;
C语言方法名规则 : Java_完整包名类名_方法名(JNIEnv *env, jobject thiz), 注意完整的类名包名中包名的点要用 _ 代替;
参数介绍 : C语言方法中有两个重要的参数, JNIEnv *env, jobject thiz ;
-- JNIEnv参数 : 该参数代表Java环境, 通过这个环境可以调用Java中的方法;
-- jobject参数 : 该参数代表调用jni方法的类,;
调用jni.h中的NewStringUTF方法 : 该方法的作用是在C语言中创建一个Java语言中的String类型对象, jni.h中是这样定义的 jstring (*NewStringUTF)(JNIEnv*, const char*), JNIEnv 结构体中包含了 NewStringUTF 函数指针, 通过 JNIEnv 就可以调用这个方法;
完成代码编写后,在当前目录下完成Android.mk和Application.mk的编写
首先是Android.mk
本例中为:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := hprof-mper
LOCAL_C_INCLUDES += external/stlport/stlport
LOCAL_C_INCLUDES += bionic
LOCAL_C_INCLUDES += bionic/libstdc++/include
LOCAL_SRC_FILES := HprofDumper.cpp \
xx.cpp \
xx.cpp \
xx.cpp \
xx.cpp \
xx.cpp \
xx.cpp \
xxx.cpp
LOCAL_SHARED_LIBRARIES := libstlport
include $(BUILD_SHARED_LIBRARY)
注意标红的是最关键的,LOCAL_C_INCLUDES 顾名思义是需要的头文件的所在的目录,那三个参数主要为了引入STL,最重要!!LOCAL_SHARED_LIBRARIES 我一直生成失败就是没加这个参数,不光要引入头文件,还要引入具体的lib,这就是这个字段的作用。
具体字段的作用:
-- LOCAL_PATH : 代表mk文件所在的目录;
-- include $(CLEAR_VARS) : 编译工具函数, 通过该函数可以进行一些初始化操作;
-- LOCAL_MODULE : 编译后的 .so 后缀文件叫什么名字;
-- LOCAL_SRC_FILES: 指定编译的源文件名称;
-- include $(BUILD_SHARED_LIBRARY) : 告诉编译器需要生成动态库;
Applicaion.mk中就一行
APP_STL = stlport_static
表示使用stl静态库。
注意:我用了STL,大家没有用STL的当然不用引入这些啦~
⑷ 为什么使用ndk编译时出现如下错误
1.dr@drBox:~/workspace/JniTest/jni$ ~/android-ndk-r6/ndk-build Compile++ thumb : Test <= JniTest.cpp /bin/sh: /home/dr/android-ndk-r6/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-g++: not found make: *** [/home/dr/workspace/JniTest/obj/local/armeabi/objs/Test/JniTest.o] Error 127
这个错误是说找不到arm-linux-androideabi-g++,确实找不到,我从ndk r6中发现根本就没有linux-x86/文件夹,只有darwin-x86 gdbserver这两个文件夹,所以下载了最新的ndk r7b,幸好这里面有linux-x86文件夹,编译成功了。
dr@drBox:~/workspace/JniTest/jni$ ~/android-ndk-r7b/ndk-build Compile++ thumb : Test <= JniTest.cpp StaticLibrary : libstdc++.a SharedLibrary : libTest.so Install : libTest.so => libs/armeabi/libTest.so
⑸ android ndk编译C源码~ld提示mblen()无法链接怎么办undefined reference to 'mblen'
不制动啊,这个唯难题是我不懂的
⑹ 求助,NDK编译时so遇到的问题
1.dr@drBox:~/workspace/JniTest/jni$ ~/android-ndk-r6/ndk-build Compile++ thumb : Test <= JniTest.cpp /bin/sh: /home/dr/android-ndk-r6/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86/bin/arm-linux-androideabi-g++: not found make: *** [/home/dr/workspace/JniTest/obj/local/armeabi/objs/Test/JniTest.o] Error 127
这个错误是说找不到arm-linux-androideabi-g++,确实找不到,我从ndk r6中发现根本就没有linux-x86/文件夹,只有darwin-x86 gdbserver这两个文件夹,所以下载了最新的ndk r7b,幸好这里面有linux-x86文件夹,编译成功了。
dr@drBox:~/workspace/JniTest/jni$ ~/android-ndk-r7b/ndk-build Compile++ thumb : Test <= JniTest.cpp StaticLibrary : libstdc++.a SharedLibrary : libTest.so Install : libTest.so => libs/armeabi/libTest.so
2.当只改动Android.mk文件后需要编译,这时mm执行后会报如下提示:
============================================ make: Entering directory `/home/dr/android4.0.3' make: Nothing to be done for `all_moles'. make: Leaving directory `/home/dr/android4.0.3'
说明没有文件改动,拒绝编译。
那么解决办法可以是去稍微改动一下cpp等文件,加个空格也行。但是还有一种方便的方式就是
给cpp文件加时间戳:touch *.cpp
这样就可以继续编译了,所有cpp文件的时间都更新为最新了。
⑺ 如何使用android的ndk编译器 编译c++的库
1. 概述 首先回顾一下 Android NDK 开发中,Android.mk 和 Application.mk 各自的职责。 Android.mk,负责配置如下内容: (1) 模块名(LOCAL_MODULE) (2) 需要编译的源文件(LOCAL_SRC_FILES) (3) 依赖的第三方库(LOCAL_STATIC_LIBRARIES,LOCAL_SHARED_LIBRARIES) (4) 编译/链接选项(LOCAL_LDLIBS、LOCAL_CFLAGS) Application.mk,负责配置如下内容: (1) 目标平台的ABI类型(默认值:armeabi)(APP_ABI) (2) Toolchains(默认值:GCC 4.8) (3) C++标准库类型(默认值:system)(APP_STL) (4) release/debug模式(默认值:release) 由此我们可以看到,本文所涉及的编译选项在Android.mk和Application.mk中均有出现,下面我们将一个个详细介绍。 2. APP_ABI ABI全称是:Application binary interface,即:应用程序二进制接口,它定义了一套规则,允许编译好的二进制目标代码在所有兼容该ABI的操作系统和硬件平台中无需改动就能运行。(具体的定义请参考 网络 或者 维基网络 ) 由上述定义可以判断,ABI定义了规则,而具体的实现则是由编译器、CPU、操作系统共同来完成的。不同的CPU芯片(如:ARM、Intel x86、MIPS)支持不同的ABI架构,常见的ABI类型包括:armeabi,armeabi-v7a,x86,x86_64,mips,mips64,arm64-v8a等。 这就是为什么我们编译出来的可以运行于Windows的二进制程序不能运行于Mac OS/Linux/Android平台了,因为CPU芯片和操作系统均不相同,支持的ABI类型也不一样,因此无法识别对方的二进制程序。 而我们所说的“交叉编译”的核心原理也跟这些密切相关,交叉编译,就是使用交叉编译工具,在一个平台上编译生成另一个平台上的二进制可执行程序,为什么可以做到?因为交叉编译工具实现了另一个平台所定义的ABI规则。我们在Windows/Linux平台使用Android NDK交叉编译工具来编译出Android平台的库也是这个道理。 这里给出最新 Android NDK 所支持的ABI类型及区别: 那么,如何指定ABI类型呢?在 Application.mk 文件中添加一行即可: APP_ABI := armeabi-v7a //只编译armeabi-v7a版本 APP_ABI := armeabi armeabi-v7a //同时编译armeabi,armeabi-v7a版本 APP_ABI := all //编译所有版本 3. LOCAL_LDLIBS Android NDK 除了提供了Bionic libc库,还提供了一些其他的库,可以在 Android.mk 文件中通过如下方式添加依赖: LOCAL_LDLIBS := -lfoo 其中,如下几个库在 Android NDK 编译时就默认链接了,不需要额外添加在 LOCAL_LDLIBS 中: (1) Bionic libc库 (2) pthread库(-lpthread) (3) math(-lmath) (4) C++ support library (-lstdc++) 下面我列了一个表,给出了可以添加到“LOCAL_LDLIBS”中的不同版本的Android NDK所支持的库: 下面是我总结的一些常用的CFLAGS编译选项: (1)通用的编译选项 -O2 编译优化选项,一般选择O2,兼顾了优化程度与目标大小 -Wall 打开所有编译过程中的Warning -fPIC 编译位置无关的代码,一般用于编译动态库 -shared 编译动态库 -fopenmp 打开多核并行计算, -Idir 配置头文件搜索路径,如果有多个-I选项,则路径的搜索先后顺序是从左到右的,即在前面的路径会被选搜索 -nostdinc 该选项指示不要标准路径下的搜索头文件,而只搜索-I选项指定的路径和当前路径。 --sysroot=dir 用dir作为头文件和库文件的逻辑根目录,例如,正常情况下,如果编译器在/usr/include搜索头文件,在/usr/lib下搜索库文件,它将用dir/usr/include和dir/usr/lib替代原来的相应路径。 -llibrary 查找名为library的库进行链接 -Ldir 增加-l选项指定的库文件的搜索路径,即编译器会到dir路径下搜索-l指定的库文件。 -nostdlib 该选项指示链接的时候不要使用标准路径下的库文件 (2) ARM平台相关的编译选项 -marm -mthumb 二选一,指定编译thumb指令集还是arm指令集 -march=name 指定特定的ARM架构,常用的包括:-march=armv6, -march=armv7-a -mfpu=name 给出目标平台的浮点运算处理器类型,常用的包括:-mfpu=neon,-mfpu=vfpv3-d16 -mfloat-abi=name 给出目标平台的浮点预算ABI,支持的参数包括:“soft”, “softfp” and “hard”
⑻ android ndk 用什么工具
首先需要确定目标机器的指令集。
如果是 x86 的机器,用 x86-4.4.3 版本的工具链;如果是 arm 指令的,用 arm-linux-androideabi-4.4.3 版本 (x86-4.4.3 和 arm-linux-androideabi-4.4.3 位于ndk目录中)
1、gcc 的sysroot 选项
sysroot 选项设定 gcc 在编译源码的时候,寻找头文件和库文件的根目录。可以这样调用 gcc --sysroot=/tmp/gcc-arm (及其他选项)。NDK 根目录下的 platforms 目录中的各个子目录的路径都可以直接传给 gcc --sysroot=<dir>。为了简化操作,可以在linux系统的命令终端执行以下命令,设置SYSROOT环境变量,$NDK是ndk的根目录。
$ SYSROOT=$NDK/platforms/android-8/arch-arm
2、调用 NDK gcc(第1种方法)。 设置 SYSROOT之后,要把它传给 gcc 的 --sysroot 选项。由于unix/linux自带的gcc并非交叉编译工具,而我们需要使用的是ndk中提供的交叉编译工具(也是gcc),所以需要想办法让编译脚本找到ndk中的gcc,而不要去寻找系统中的gcc。而 unix/linux 系统的编译脚本常常会用 CC 环境变量来引用编译器,所以通过把 CC 设置为ndk中的gcc的路径,就能帮助编译脚本找到正确的gcc(我们还能顺便加上--sysroot选项)。
将CC 按如下设置
$ export CC="$NDK/toolchains/<name>/prebuilt/<host-system>/bin/<prefix>gcc --sysroot=$SYSROOT"
$ $CC -o foo.o -c foo.c (不必执行这一行,这条命令是调用gcc编译程序)
上面第1行之后之后,再去执行./configure 就可以编译出arm程序了。不过还需要考虑共享库的链接问题,要确保该程序没有链接ndk未提供的共享库。该方法的缺陷就是,不能使用 C++ STL(STLport 或 GNU libstdc++ ),也不能使用异常机制和RTTI。
3、调用NDK编译器(第2种方法,更简单)
android ndk 提供脚本,允许自己定制一套工具链。例如:
$NDK/build/tools/make-standalone-toolchain.sh --platform=android-5 --install-dir=/tmp/my-android-toolchain [ --arch=x86 ]
将会在/tmp/my-android-toolchain 中创建 sysroot 环境和 工具链。--arch 选项选择目标程序的指令架构,默认是为 arm。
如果不加 --install-dir 选项,则会创建 /tmp/ndk/<toolchain-name>.tar.bz2。
(执行 make-standalone-toolchain.sh --help 查看帮助。)
运行之后,这样使用:
$ export PATH=/tmp/my-android-toolchain/bin:$PATH
$ export CC=arm-linux-androideabi-gcc
$ export CXX=arm-linux-androideabi-g++
$ export CXXFLAGS="-lstdc++"
执行完以上设置环境变量的命令之后,就可以直接编译了(例如,执行 ./configure 然后 make 得到的就是 arm 程序了)。不用再设定 sysroot, CC 了。而且,可以使用 STL,异常,RTTI。
4、ABI 兼容性
ndk 同时支持 arm5 和 arm7,一般只用 arm5就好了。arm7是高端一点的,NDK 默认也是 arm5 。
推荐加上 -mthumb 选项给gcc,来生成 16-bit Thumb-1 指令。
如果要用 arm7,可以设定 CFLAGS='-march=armv7-a -mfloat-abi=softfp', 使用 Thumb-2 指令,且这两个选项不能分开!
5、警告 & 限制
5.1 Windows支持
Windows 上的NDK 工具链不依赖 Cygwin,因而速度比用 Cygwin 快一点,但是这些工具不能理解
Cygwin 的路径名(例如, /cygdrive/c/foo/bar)。只能理解 C: /cygdrive/c/foo/bar 这类路径
不过,NDK 提供的build工具能够很好地应对上述问题(ndk-build)
5.2 wchar_t 支持
wchar_t 类型仅从 Android 2.3 开始支持。
在 android-9 上, wchar_t 是 4字节。 并且 C语言库提供支持宽字符的函数
(例外:multi-byte 编码/解码 函数 和 wsprintf/wsscanf )
在android-9 以前的平台上,wchar_t 是1字节,而且宽字符函数不起作用。
建议不使用 wchar_t,提供 wchar_t 支持是为了方便移植以前的代码。
5.3 异常, RTTI 和 STL
NDK 工具链默认支持C++异常和RTTI(Run Time Type Information),可以用 -fno-exception 和 -fno-rtti 关闭(生成的机器码更小)
注意: 如果要用这两个特性,需要显式链接 libsupc++。例如: arm-linux-androideabi-g++ .... -lsupc++
NDK 提供了 libstdc++,因而可以用 STL,但需要显式链接 libstdc++ ( gcc ... -lstdc++)。不过在将来可以不用手动指定这个链接参数。