‘壹’ 加减乘除简便运算法则定律
在数学中,有关加减乘除简算法则定律的计算方法及技巧如下,可以参考一下:
加法交换律:a+b+c=a+c+b。
加法结合律:a+b+c=a+(b+c)。
减法交换侓:a-b-c=a-c-b
减法结合侓:a-b-c=a-(b+c)。
乘法交换律:a×b=b×a。
乘法结合律(a×b)×c=a×(b×c)。
乘法分配律:(a+b)×c=a×c+b×c。
加减乘除运算法则定律
乘法分配律
两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。
字母表达是:a×(b+c)=a×b+a×c
【a×(b-c)=a×b-a×c】
或:a×b+a×c=a×(b+c)
【a×b-a×c=a×(b-c)】
加减计算法则
1.整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2.小数加、减法的计算法则:
1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3.分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
‘贰’ 有什么加法,乘法运算定律
这些:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a*b=b*a
乘法结合律:(a*b)*c=a*(b*c)
乘法分配律:(a+b)*c=a*c+b*c
减法:满足分配律;除法:不满足分配律。
1、字母表达形式:
运算定律共有五个:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律,要求在理解的基础上掌握,并能灵活运用。
运算性质指:一个数加上两个数的差;一个数减去两个数的和;一个数减去两个数的差;一个数乘以两个数的商;一个数除以两个数的积;一个数除以两个数的商;几个数的和除以一个数等。这部分内容只是用于简便运算。
运算法则包括:整数四则运算法则、小数四则运算法则、分数四则运算法则,要求在理解的基础上掌握法则,并能运用法则熟练地进行计算。
公式在小学数学的运用中,重点是两方面:
1.运算定律或性质用字母公式表示
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:a(b+c)=ab+ac
2.几何形体的周长、面积、体积计算公式
长方形周长:C=2(a+b)
正方形周长:C=4a
圆的周长:C=2πr,或(πd)
长方形面积:S=ab
正方形面积:S=a2
平行四边形面积:S=ah
圆形面积:S=πr2
长方体体积:V=abc表面积S=2(ab+ac+bc)
正方体体积:V=a3表面积S=6a2
圆柱体体积:V=πr2h表面积S=2πrh+2πr2
要使学生正确理解和掌握基础知识,教师要认真学习大纲,认真钻研教材,正确理解大纲所要求学生掌握基础知识的深度和广度,并要注重在使学生理解与掌握知识的同时,培养学生的能力,能力发展了,也就更促进对知识的理解和掌握,它们之间是互相促进,密不可分的。
行程通常可以分为这样几类:
相遇问题:速度和×相遇时间=相遇路程;
追及问题:速度差×追及时间=路程差;
流水问题:关键是抓住水速对追及和相遇的时间不产生影响;
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
(也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个)
环形行程:抓住往返过程中不便的关系
比例应用:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。
复杂行程:包括多次相遇、火车过桥,二维行程等。
2、定义定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
3、数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
‘叁’ 小学三年级加减乘除运算法则有哪些
四则运算的运算顺序:
1、一般情况下,四则运算的计算顺序是:有括号时,先算括号里面的。只有同一级运算时,从左往右。含有两级运算,先算乘除后算加减。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a
乘法交换律:a×b=b×a
加法结合律:(a+b)+c=a+(b+c)
乘法结合律:(a×b)×c=a×(b×c)
加法:
把两个数合并成一个数的运算/把两个小数合并成一个小数的运算/把两个分数合并成一个分数的运算减法:已知两个加数的和与其中一个加数,求另一个加数的运算。
乘法:
求几个相同加数的和的简便运算。小数乘整数的意义与整数乘法意义相同。一个数乘纯小数就是求这个数的十分之几,百分之几……分数乘整数的意义与整数乘法意义相同。
除法:
已知两个因数的积与其中一个因数,求另一个因数的运算。与整数除法的意义相同。
‘肆’ 加法,减法,乘法,除法的法则分别是什么
加法:把两个数合并成一个熟的运算,即求两个数的和的运算。减法:已知两个数的和与其中一个数,求另一个数的运算。乘法:求两个数积的运算,或求几个相同加数的和简便运算。除法:已知两个因数的积与其中一个因数,求另一个因数的运算。
‘伍’ 加法,乘法的运算定律是什么
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a*b=b*a
乘法结合律:(a*b)*c=a*(b*c)
乘法分配律:(a+b)*c=a*c+b*c
‘陆’ 整数加减乘除计算法则
运算法规则:
1.整数加法计算法则
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2.整数减法计算法则
相同数位对齐,从低位减起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3、整数乘法法则:
(1)从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;
(2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)
4、整数的除法法则
(1)从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;
(2)除到被除数的哪一位,就在那一位上面写上商;
(3)每次除后余下的数必须比除数小。
2385
‘柒’ 加法和乘法的运算律
加法交换律就是交换两个加数的位置,和不变;加法结合律就是三个数相加,可以先加两个数,也可以先加后两个数,和不变;乘法交换律是交换两个因数的位置,积不变;乘法结合律是三个数相乘,可以先乘前两个因数,也可以先乘后两个因数,积不变;乘法分配律是两个数的和与一个数相乘,可以把这两个加数分别和这个数相乘,结果不变。
这个就是小学阶段 5 个运算律的基本内容,我们可以从以下三个方面来把握。
第一,运算律的表达形式是一个恒等式,是对原来的算式进行等值变形。
第二,变化过程中,加法和乘法交换律变化特点是只改变数的位置,其他都不变化;加法结合律和乘法结合律的变化特点是只改变运算顺序,其他都不变化;而乘法分配律变化比较多:运算的步数变多了,运算顺序也改变了,数的位置也改变。所以它是学生学习的难点。
第三,这 5 个运算律都是最基本的,可以拓展,如交换律与结合律可以拓展为 3 、 4 个数等;乘法分配律可以拓展为多个数的和与一个数相乘;或拓展为两个数的差与一个数相乘。也就是说乘法可以对加法进行分配,也可以对减法进行分配,还可以根据除以一个数等于乘一个数的倒数,可以拓展到除法商,即两个数的和或差除以一个数的算式,可以应用分配律。
‘捌’ 加乘法怎么算
根据数学运算法则,先算乘除再算加减。如果有小括号,先算小括号里面的。