导航:首页 > 源码编译 > 对数运算法则题目及解析

对数运算法则题目及解析

发布时间:2025-09-12 11:43:44

① 对数函数的加减乘除是什么,顺便举个例子

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

以上内容参考:网络-对数函数

② 对数相乘怎么算

两对数相乘无法利用对数的运算性质求解,因此在解决此类问题时,要根据所给的关系式认真分析其结构特点,主要有三种处理方法:

1、利用换底公式;

2、整体考虑;

3、化各对数为和差的形式。

举题说明:log2 25•log3 4•log5 9

解:原式=log2 5² × log3 2² ×log5 3²

=2log2 5 × 2log3 2 × 2log5 3

=8 【(lg5)/(lg2)】 × 【(lg2)/(lg3)】 × 【(lg3)/(lg5)】

=8

(2)对数运算法则题目及解析扩展阅读:

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

③ 对数函数的四则运算问题

对数的运算法则:

一、四则运算法则:

loga(AB)=loga A+loga B

loga(A/B)=loga A-loga B

logaN^x=xloga N

二、换底公式

logM N=loga M/loga N

三、换底公式导出:

logM N=-logN M

四、对数恒等式

a^(loga M)=M

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

④ 怎样算对数什么是对数

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b。

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】

阅读全文

与对数运算法则题目及解析相关的资料

热点内容
海南免税溯源码查询 浏览:635
linux中表示什么 浏览:7
建筑加密区长度间隔多少布置一下 浏览:654
android电容触摸屏驱动 浏览:352
linux打开firefox命令 浏览:453
android结构体数组 浏览:691
python多变量输出格式 浏览:556
命令的人群 浏览:780
app权限测试包括什么 浏览:734
录音保存后在哪个文件夹 浏览:991
香港服务器的数据怎么搬到阿里云 浏览:424
服务器怎么样打开 浏览:665
程序员兼职网站靠谱吗 浏览:974
招手游程序员 浏览:921
网格设计pdf 浏览:12
中央文献研究室和中央编译局 浏览:969
济南图纸加密 浏览:374
云服务器如何扩展 浏览:946
ug装配体存多个文件夹 浏览:939
对数运算法则题目及解析 浏览:107