① 《数据结构与算法分析C语言描述》真的适合初学者吗
C语言的基本语法你只要掌握了
数据结构都不是问题
数据结构就是 数据的组织方式 或者说 是一种更便捷的让程序更高效的方法。这里面用到的都是C语言的基础知识。
就像你做饭 一个辣椒可以炒素菜、可以炒荤菜、也可以炸成辣椒油……
同样一个东西 根据自己目的的不同 选择一个最高效的方法 就是数据结构与算法的目的.
书上的数据结构与算法 只是给你一些实际应用中的列子和一些基本方法,现实中做程序还需要你自己根据自己的需要去组合去研究更好的算法……
② 如何快速入门数据分析
首先我说说这两种方向共同需要的技术面,当然以下只是按照数据分析入门的标准来写:
1. SQL(数据库),我们都知道数据分析师每天都会处理海量的数据,这些数据来源于数据库,那么怎么从数据库取数据?如何建立两表、三表之间的关系?怎么取到自己想要的特定的数据?等等这些数据选择问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能,零基础学习SQL可以阅读这里:SQL教程_w3cschool
2. 统计学基础,数据分析的前提要对数据有感知,数据如何收集?数据整体分布是怎样的?如果有时间维度的话随着时间的变化是怎样的?数据的平均值是什么?数据的最大值最小值指什么?数据相关与回归、时间序列分析和预测等等,这些在网易公开课上倒是有不错的教程:哈里斯堡社区大学公开课:统计学入门_全24集_网易公开课
3.Python或者R的基础,这一点是必备项也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。至于学习资料:R语言我不太清楚,Python方向可以在廖雪峰廖老师的博客里看Python教程,面向零基础。
再说说两者有区别的技能树:
1.数据挖掘向
我先打个前哨,想要在一两个月内快速成为数据挖掘向的数据分析师基本不可能,做数据挖掘必须要底子深基础牢,编程语言基础、算法、数据结构、统计学知识样样不能少,而这些不是你自习一两个月就能完全掌握的。
所以想做数据挖掘方向的,一定要花时间把软件工程专业学习的计算机基础课程看完,这些课程包括:数据结构、算法,可以在这里一探究竟:如何学习数据结构?
在此之后你可以动手用Python去尝试实现数据挖掘的十八大算法:数据挖掘18大算法实现以及其他相关经典DM算法
2.产品经理向
产品经理向需要你对业务感知能力强,对数据十分敏感,掌握常用的一些业务分析模型套路,企业经常招聘的岗位是:商业分析、数据运营、用户研究、策略分析等等。这方面的学习书籍就很多,看得越多掌握的方法越多,我说几本我看过的或者很多人推荐的书籍:《增长黑客》、《网站分析实战》、《精益数据分析》、《深入浅出数据分析》、《啤酒与尿布》、《数据之魅》、《Storytelling with Data》
③ 如何学习数据结构与算法
1、记住数据结构,记住算法思想(是什么)记住数据结构最直观的东西;记忆该数据结构的定义、性质、特点等。很多东西的理解和创新都是以记忆为前提的。
2、进行大量相关编程练习,用编程语言去实现某一数据结构上的算法(怎么办)
很多时候,理解一个算法很容易,很容易在纸上去模拟一个算法的实现过程。但具体实现,则是另一回事。一定得先自己思考,然后再去看书中给的编程语言实现。
3、“记住”特定情景下,利用某一特定的数据结构,去解决问题 (为什么+怎么办)
每介绍一种数据结构,浙大数据结构与算法的MOOC课程都会有一个实际问题来作为“引子”,回答了“这种数据结构为什么会出现”。有的是为了实现特定的操作,有的是为了时间和空间上(大部分考虑的是时间复杂性)效率的更高(所以,没事的时候,分析一下算法的时间复杂性)。这些东西,我们也须理解记忆。每一数据结构都有其特性,去解决某一类问题,我们需要去记忆,去感悟。
4、形成一个属于自己的知识体系
如何去“记住”(记好笔记,多多复习);在学习过程中,遇到挫折,产生挫败感该如何处理(这个是必然会发生的,总有难以理解不会的地方);如何进行心态方面的调整(欲速则不达,不过也有”敏捷学习“的概念)。
④ 什么是数据结构和算法学算法还需要去了解数据结构吗
你这理解不完全正确。
因为数据结构不只是内存中数据的排列,它是对数据的一种组织方式,就像图书馆要排书一样,是为了便于操作,同时它本身也集成了对通用操作:比如查找、比较等的支持。数组不是一种数据结构,而是一种数据类型。一个完整的数据结构包括逻辑结构和存储结构。通常选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。
因此在语言实现上,数据结构通常也会包含与之相对应的算法集合,这些算法是指基本算法:查找、索引、比较等。
数据结构的逻辑结构和硬件是没有关系的,而其存储结构受到计算机硬件系统工作方式的影响,通常这点影响在于数据时顺序存储还是离散存储。算法的基础是数据结构。只有指定明确的数据结构,算法才能设计完成,脱离数据结构,算法是无法,也不可能成立的。因为不需要数据的算法就不是一个有效的计算机算法,算法中任何对数据的组织形式都可以被称之为数据结构。
2.数据结构在编程中的地位是极其重要的,是一个程序实现的基础中的基础,在此基础上才能构建算法。通常而言,你不了解什么高深的算法,一样能完成工作,但是如果你不了解基本的数据结构,那么可以说,你根本就不能完成一个任何有实质性内容的程序。Donald Ervin Knuth教授在其《计算机程序设计艺术》的第一卷《基本算法》中花费的绝大部分的篇幅去论述数据结构。由此可见数据结构对算法的重要性。
⑤ 初学者如何学算法
先看看两本书,一本数据结构,一本离散数学。。。看完以后你就会。。。。
⑥ 什么是数据结构和算法分析在编程里起到什么作用
编程是为了解决问题,这些问题并表都是数值计算,其所处理的数据并不都是数值,但计算机所能处理的最终是0和1的二进制串,所以需要把问题中的数据用计算机能处理的方式来表示,这就需要数据结构。
简单的说,数据结构是数据在计算机中的表示方式,有逻辑结构和物理结构之分,如逻辑上同样的队列,物理上可以是顺序存储,也可以是链式存储。
通俗的讲,算法就是解决问题的方法,比如同样的排序,可以用冒泡排序、插入排序等,不同的算法可以达到相同的目标,但是效率可能有所不同。
⑦ 怎么学好数据结构与算法,好难啊
李明杰老师:每周一道算法题 通关算法面试课(超清视频)网络网盘
链接: https://pan..com/s/14GZpVf03Mf9E-YnMrrR4Pw
若资源有问题欢迎追问~
⑧ 学数据结构和算法之前要先学什么
学习算法和数据结构就是把你的程序运行速度变得更快,内存需求变得更小,代码长度变得更短。正式进入数据结构和算法前需要了解下C++内存的那些事。
在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。
栈,在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限;
堆,就是那些由new分配的内存块,它们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收;
自由存储区,就是那些由malloc等分配的内存块,它和堆是十分相似的,不过它是用free来结束自己的生命的;
全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的,在C++里面没有这个区分了,他们共同占用同一块内存区;
常量存储区,这是一块比较特殊的存储区,它们里面存放的是常量,不允许修改。
以上内容摘自《C++内存管理技术内幕》,学习数据结构和算法前可以多多看一下。
⑨ 如何学习数据结构
学好数据结构首先学好C语言指针,数据机构内在串联全靠指针作用,指针主要难在本身是带地址的变量,再加上指针的指针串联导致很多人误解,先要学会理解,要对计算机的内存结构有个大概了解,对一些常见的进制之间的转化以及字节对齐等有行程基本的认知。
理解概念,建立抽象模型,比如简单的队列,先进先出模式,在设计数据模型的时候,就需要有一个对头和队尾的概念,数据需要从队尾插入队头出来,基本上三个属性就出来了,一个对头指针,一个队尾指针,一个结构体数值,常见的方法有删除清空队列,有插入队列操作,出队操作,创建初始队列操作等等,这样子抽象数据模型,形成自己的思维理解,然后再进行代码设计。
需要变通实践,代码调试变通,数据结构的组合无穷变着写代码。算法的奥妙就是在于变换,放在数据结构也是这个样子,掌握基本的数据机构算法,在学好数据结构的前提下可以学习下一本经典的算法书《算法导论》这个是算法的经典书籍。
学习数据机构不要想着有什么技巧或者方法,把自己调整到最佳的学习状态,方法自然就有了,不要给自己设置什么限制,设置底线只会让自己处在一个围墙之内,学习新东西就是突破自我的一个过程,不要在开始学习的时候给自己过大的压力。