导航:首页 > 源码编译 > java层次聚类算法

java层次聚类算法

发布时间:2022-09-22 00:41:36

❶ 四种聚类方法之比较

四种聚类方法之比较
介绍了较为常见的k-means、层次聚类、SOM、FCM等四种聚类算法,阐述了各自的原理和使用步骤,利用国际通用测试数据集IRIS对这些算法进行了验证和比较。结果显示对该测试类型数据,FCM和k-means都具有较高的准确度,层次聚类准确度最差,而SOM则耗时最长。
关键词:聚类算法;k-means;层次聚类;SOM;FCM
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。
聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。
聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。
1 聚类算法的分类
目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。
每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。
目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如着名的FCM算法等。
本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
2 四种常用聚类算法研究
2.1 k-means聚类算法
k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:

这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值[9]。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下:
输入:包含n个对象的数据库和簇的数目k;
输出:k个簇,使平方误差准则最小。
步骤:
(1) 任意选择k个对象作为初始的簇中心;
(2) repeat;
(3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
(4) 更新簇的平均值,即计算每个簇中对象的平均值;
(5) until不再发生变化。
2.2 层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下:

这里给出采用最小距离的凝聚层次聚类算法流程:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、(3),直到所有类最后合并成一类。
2.3 SOM聚类算法
SOM神经网络[11]是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程:
(1) 网络初始化,对输出层每个节点权重赋初值;
(2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;
(3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
(4) 提供新样本、进行训练;
(5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
2.4 FCM聚类算法
1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析[12]。
FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。

算法流程:
(1) 标准化数据矩阵;
(2) 建立模糊相似矩阵,初始化隶属矩阵;
(3) 算法开始迭代,直到目标函数收敛到极小值;
(4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
3 四种聚类算法试验
3.1 试验数据
实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS[13]数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。
3.2 试验结果说明
文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。

如表1所示,对于四种聚类算法,按三方面进行比较:(1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;(2)运行时间:即聚类整个过程所耗费的时间,单位为s;(3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为:

3.3 试验结果分析
四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。
聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。

❷ 常用的聚类方法有哪几种

聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。

1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。

2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。

3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。

4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。

5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。

6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。

(2)java层次聚类算法扩展阅读:

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。

它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。

许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。

❸ 有哪些常用的聚类算法

【聚类】聚类分析是直接比较各对象之间的性质,根据在对象属性中发现的描述对象及其关系的信息,将数据对象分组。其目标是,组内的对象相互之间是相似的(相关的),而不同组中的对象是不同的(不相关的)。组内的相似性(同质性)越大,组间差别越大,聚类就越好。

聚类的目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,是无监督学习过程。在无监督学习中,训练样本标记信息是未知的。聚类试图将数据集中的样本划分为若干个通常不相交的子集,每个子集称为一个“簇”,每个簇可能对应于一些潜在的类别,这些类别概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需要由使用者来把握和命名。

❹ 聚类算法有哪些

聚类算法有:划分法、层次法、密度算法、图论聚类法、网格算法、模型算法。

1、划分法

划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法。

2、层次法

层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等。

3、密度算法

基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等。

4、图论聚类法

图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

5、网格算法

基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法。

6、模型算法

基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。通常有两种尝试方向:统计的方案和神经网络的方案。

(4)java层次聚类算法扩展阅读:

聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

❺ 有哪些常用的聚类算法

聚类分析计算方法主要有如下几种:
1. 划分法(partitioning methods)
给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;
2. 层次法(hierarchical methods)
这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;
3. 基于密度的方法(density-based methods)
基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。这个方法的指导思想就是,只要一个区域中的点的密度大过某个阀值,就把它加到与之相近的聚类中去。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等;
4. 基于网格的方法(grid-based methods)
这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;
5. 基于模型的方法(model-based methods)
基于模型的方法给每一个聚类假定一个模型,然后去寻找能个很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。通常有两种尝试方向:统计的方案和神经网络的方案。

❻ 请问层次聚类法与模糊聚类法有什么区别与联系

你的应用背景我不了解。但是感觉你好像要把样本分成三类,如果是这样的话,最好不要用层次聚类算法。 层次聚类算法是不能自己指定聚类个数的,你需要用划分的聚类算法。聚类算法粗略分为两类:基于“层次的”与基于“划分”的。你说的模糊聚类算法也分很多种,最着名的也是最常用的就是模糊c均值聚类算法,它是基于“划分”的,个人感觉它应该适用于你的问题。你不需要把“层次”聚类与“划分”的或者“模糊”聚类进行结合。模糊c均值聚类本身就可以人为指定聚类个数,如果结合聚类有效性指标,也可以自动确定聚类个数。聚类有效性指标以及模糊c均值你可以查文献,上中国知网搜索,很多的,要想看具体的介绍可以搜索相关博士或者硕士论文,在里面都会介绍具体细节。模糊c均值的改进算法主要是可能性聚类算法,希望对你有帮助。

❼ k-means聚类算法的java代码实现文本聚类

K-MEANS算法:
k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

具体如下:
输入:k, data[n];
(1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 对于data[0]….data[n], 分别与c[0]…c[n-1]比较,假定与c[i]差值最少,就标记为i;
(3) 对于所有标记为i点,重新计算c[i]=/标记为i的个数;
(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。

算法实现起来应该很容易,就不帮你编写代码了。

❽ 用于数据挖掘的聚类算法有哪些,各有何优势

聚类方法的分类,主要分为层次化聚类算法,划分式聚类算法,基于密度的聚类算法,基于网格的聚类算法,基于模型的聚类算法等。

而衡量聚类算法优劣的标准主要是这几个方面:处理大的数据集的能力;处理任意形状,包括有间隙的嵌套的数据的能力;算法处理的结果与数据输入的顺序是否相关,也就是说算法是否独立于数据输入顺序;处理数据噪声的能力;是否需要预先知道聚类个数,是否需要用户给出领域知识;算法处理有很多属性数据的能力,也就是对数据维数是否敏感。

.聚类算法主要有两种算法,一种是自下而上法(bottom-up),一种是自上而下法(top-down)。这两种路径本质上各有优势,主要看实际应用的时候要根据数据适用于哪一种,Hierarchical methods中比较新的算法有BIRCH主要是在数据体量很大的时候使用;ROCK优势在于异常数据抗干扰性强……

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

❾ 在层次聚类中,如何确定聚类的最终个数

最简单有效的方法就是穷举1到N个聚类个数的情况,然后分别算似然。选似然最大的,可以保证找到似然上最优的。
但是如果你的聚类个数有200w个呢?
不要觉得是开玩笑的,不信你们去看看腾讯做的LDA。
如果你是做论文的,可以考虑用Dirichlet Processes.可以学习出聚类个数。推断算法都是现成的。
还一种方法是,如果你的数据很多,可以给一个很大的聚类个数,迭代的过程中按某些准则合并或者丢弃掉一些聚类中心,最后达到一个满意的聚类个数哦(比如,无论扔掉哪个聚类中心或者合并某两个中心,都会导致模型的似然降低,那么就可以停止算法了)。其实很多求解DP模型的算法就是用的这方法。如果你单独用这个算法,就显得很low,如果先用DP建模然后用这方法求解,就显得理论值高些。
作者:杨超
来源:知乎

❿ 层次聚类改进

一个层次的聚类方法将数据对象组成一棵聚类的树。根据层次分解是自底向上的还是自顶向下形成的,层次的聚类方法可以进一步分为凝聚的(agglomerative)和分裂的(divisive)层次聚类。

(1)凝聚的层次聚类:这种自底向上的策略首先将每个对象作为单独的一个簇,然后和并这些原子簇为越来越大的簇,直到所有的对像都在一个簇中,或者达到某个终止条件。

(2)分裂的层次聚类:这种自顶向下的策略与凝聚的层次聚类相反,它首先将所有的对象置于一个簇中。然后逐渐细分为越来越小的簇,直到每个对象在单独的一个簇中,或者达到一个终止条件,例如打到了某个希望的簇数目后者两个簇之间的距离超过了某个阀值。

例2 图2-3描述了一个凝聚的层次聚类方法AGNES(Agglomerative NESting)和一个分裂的层次聚类方法DIANA(Divisive Analysis)在一个包含五个对象的数据集合{a,b,c,d,e}上的处理过程。最初,AGNES将每个对象作为一个簇,然后这些簇根据某些准则一步步合并。例如,如果簇C1中的一个对象和簇 C2中的一个对象之间的距离使所有属于不同簇的对象间欧式距离最小的,C1和C2可能被合并。其每个簇可以被簇中所有对象代表,两个簇间的相似度由两个不同簇中距离最近的数据点对的相似度来确定。聚类的合并过程反复进行直到所有对象最终合并为一个簇。

图2-3 在对象集合(a,b,c,d)上的凝聚与分裂层次聚类

在DIANA方法处理过程中,所有的对象都放在一个簇中。根据一些原则(如簇中最邻近的对象的最大欧氏距离),将该簇分裂。簇的分裂过程反复进行,直到最终每个新的簇只包含一个对象。

层次聚类方法尽管简单,但经常会遇到合并或分裂点选择的困难。这样的选择是非常关键的,因为一旦一组对象(合并或分裂)完成,它就不能被撤销,下一步的处理将在新完成的簇上进行。这个严格规定是有用的,由于不用担心组合数目的不同选择,计算代价会比较小。但是,已做的处理不能被撤消,聚类之间也不能交换对象。如果在某一步没有很好的选择合并或分裂的决定,可能会导致低质量的聚类结果。而且,这种聚类不具有很好的可伸缩性。因为合并或分裂的决定需要检查和估算大量的对象或结果。

改进层次方法的聚类质量的一个有希望的方向是将层次聚类和其他聚类技术集成。有两种方法可以改进层次聚类的结果:

(i) 在每层划分中,仔细分析对象间的“联接”,例如CURE和Chameleon中的做法。

(ii)综合层次凝聚和迭代的重定位方法。首先用自底向上的层次算法,然后用迭代的重定位来改进结果。例如BIRCH中的方法。

阅读全文

与java层次聚类算法相关的资料

热点内容
鸡料与鸡粪的算法 浏览:833
phpif变量为空值 浏览:59
iot编译器异常 浏览:600
代理服务器被禁用怎么上网 浏览:411
隐私加密怎么设置密码 浏览:940
马丁靴补色解压 浏览:565
在设置app上怎么找到个人热点 浏览:754
按照档案号生成文件夹 浏览:1000
程序员转方向 浏览:111
lol敏捷加密 浏览:882
传统公司眼中的加密货币 浏览:430
电脑图标又出现文件夹怎么去掉 浏览:964
排序算法c和a 浏览:418
手机拍照上传android 浏览:343
linux压缩率 浏览:614
电脑浏览器加密端口 浏览:536
单片机线性电源 浏览:268
韩国云服务器评测 浏览:740
python输出hello 浏览:594
如何在最左侧添加文件夹 浏览:500