1. 谁知道“优先调度算法”
应该是:优先级调度算法吧
给每个任务定一个优先级,优先级高的可以先进行处理,
优先级低的只能等待,
如果优先级一样,可以采用先来先服务进行处理。
2. css优先级计算规则
梳理这部分是因为在使用组件模式开发h5应用会出现组件样式修改未生效的问题,在解决样式修改的问题前,需要理清楚CSS样式生效的优先级。样式根据引入和声明需要分开介绍,分为 引入样式优先级 和 声明样式优先级 。
引入样式优先级
引入样式优先级一般是在外部样式、内部样式、内联样式之间应用同一个样式的情况是使用, 优先级如下:
外部样式 | 内部样式 < 内联样式
外部样式 和 内部样式 ,最后出现的优先级最高,例如:
<!-- 内联样式 --><spanstyle="color:red;">Hello</span><styletype="text/css">/* 内部样式 */h3{color:green;}</style><!-- 外部样式 style.css --><linkrel="stylesheet"type="text/css"href="style.css"/>
因此,对于一些重置的样式集,比如 normalize.css/reset.css 必须写在所有样式的前面。
PS: 没有外联样式, 参考 。
声明样式优先级
1. 大致的优先级
一般来说满这个规则:
继承不如指定
!important > 内联 > ID > Class|属性|伪类 > 元素选择器
:link、:visited、:hover、:active按照LVHA(LoVe HAte)顺序定义
上面是优先级算法反映出的大致结果,在一般的开发中熟记即可。如果需要进一步研究原理,则了解下优先级算法。
2. 优先级算法
选择器的特殊性值分为四个等级,如下:
等级标签内选择符ID选择符Class选择符/属性选择符/伪类选择符元素选择符
示例<span style="color:red;">#text{color:red;}.text{color:red;} [type="text"]{color:red}span{color:red;}
标记位x,0,0,00,x,0,00,0,x,00,0,0,x
特点:
每个等级的初始值为0,
每个等级的叠加为选择器出 现的次数相加
不可进位,比如0,99,99,99
依次表示为:0,0,0,0
每个等级计数之间没关联
等级判断从左向右,如果某一位数值相同,则判断下一位数值
如果两个优先级相同,则最后出现的优先级高,!important也适用
通配符选择器的特殊性值为:0,0,0,0
继承样式优先级最低 ,通配符样式优先级高于继承样式
计算示例:
a{color: yellow;} /*特殊性值:0,0,0,1*/
div a{color: green;} /*特殊性值:0,0,0,2*/
.demo a{color: black;} /*特殊性值:0,0,1,1*/
.demo input[type="text"]{color: blue;} /*特殊性值:0,0,2,1*/
.demo *[type="text"]{color: grey;} /*特殊性值:0,0,2,0*/
#demo a{color: orange;} /*特殊性值:0,1,0,1*/
div#demo a{color: red;} /*特殊性值:0,1,0,2*/
生效示例:
<ahref="">第一条应该是黄色</a><!--适用第1行规则--><divclass="demo"><inputtype="text"value="第二条应该是蓝色"/><!--适用第4、5行规则,第4行优先级高--><ahref="">第三条应该是黑色</a><!--适用第2、3行规则,第3行优先级高--></div><divid="demo"><ahref="">第四条应该是红色</a><!--适用第6、7行规则,第7行优先级高--></div>
关于伪类LVHA的解释
a标签有四种状态:链接访问前、链接访问后、鼠标滑过、激活,分别对应四种伪类:link、:visited、:hover、:active;
当鼠标滑过a链接时,满足:link和:hover两个伪类,要改变a标签的颜色,就必须将:hover伪类在:link伪类后面声明;
当鼠标点击激活a链接时,同时满足:link、:hover、:active三种状态,要显示a标签激活时的样式(:active),必须将:active声明放到:link和:hover之后。因此得出LVHA这个顺序。
这个顺序能不能变?可以,但也只有:link和:visited可以交换位置,因为一个链接要么访问过要么没访问过,不可能同时满足,也就不存在覆盖的问题。
在组件中的应用
目前的前端开发为了增加开发效率,会对常用组件进行封装,此外,组件还会添加一些必要的结构样式。但是业务的设计文稿中可不一定按照预先写好的默认样式,需要在开发业务时根据组件的DOM结构修改默认样式,此时会出现样式不生效的问题。
例如下面的结构,如果对Title直接增加样式类,则肯定不会生效,因为Title的DOM结构为两层(组件样式定义规定不能使用ID选择器,且类选择器满足最小标记原则)),故样式最多为0,0,2,x。因此,样式多层标记就可提高自定义样式的优先级,例如下方的SCSS写法。
<Pageclass="test"><Headerclass="test__header"><Navbar><Titleclass="test__header--title">Toolbar</Title></Navbar></Header><Content></Content></Page>
.test{.test__header{.test__header--title{height:100px;}}}
此外,对于Page组件的样式标记策略推荐使用 金字塔形(树形) ,比如上面的SCSS书写,这样可以保证内部自定义样式不会受到外部干扰,减少不必要的麻烦。
链接:https://www.jianshu.com/p/1c4e639ff7d5
3. 优先级调度算法
思路都完全给你了,只要你敲敲代码你都不干,看你毕业找不到工作
4. 动态优先级调度算法
给你两个例子,第一个:http://dev.csdn.net/article/53/53415.shtm
第二个:
#include "stdio.h"
#include <STDLIB.H>
#include <CONIO.H>
#define getpch(type) (type*)malloc(sizeof(type))
#define NULL 0
struct pcb { /* 定义进程控制块PCB */
char name[10];
char state;
int super;
int ntime;
int rtime;
struct pcb* link;
}*ready=NULL,*p;
typedef struct pcb PCB;
sort() /* 建立对进程进行优先级排列函数*/
{
PCB *first, *second;
int insert=0;
if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/
{
p->link=ready;
ready=p;
}
else /* 进程比较优先级,插入适当的位置中*/
{
first=ready;
second=first->link;
while(second!=NULL)
{
if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/
{ /*插入到当前进程前面*/
p->link=second;
first->link=p;
second=NULL;
insert=1;
}
else /* 插入进程优先数最低,则插入到队尾*/
{
first=first->link;
second=second->link;
}
}
if(insert==0) first->link=p;
}
}
input() /* 建立进程控制块函数*/
{
int i,num;
//clrscr(); /*清屏*/
printf("\n 请输入进程号?");
scanf("%d",&num);
for(i=0;i<NUM;I++) scanf(?%s?,p- 输入进程名:?); printf(?\n p="getpch(PCB);" 进程号No.%d:\n?,i); {>name);
printf("\n 输入进程优先数:");
scanf("%d",&p->super);
printf("\n 输入进程运行时间:");
scanf("%d",&p->ntime);
printf("\n");
p->rtime=0;p->state='w';
p->link=NULL;
sort(); /* 调用sort函数*/
}
}
int space()
{
int l=0; PCB* pr=ready;
while(pr!=NULL)
{
l++;
pr=pr->link;
}
return(l);
}
disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/
{
printf("\n qname \t state \t super \t ndtime \t runtime \n");
printf("|%s\t",pr->name);
printf("|%c\t",pr->state);
printf("|%d\t",pr->super);
printf("|%d\t",pr->ntime);
printf("|%d\t",pr->rtime);
printf("\n");
}
check() /* 建立进程查看函数 */
{
PCB* pr;
printf("\n **** 当前正在运行的进程是:%s",p->name); /*显示当前运行进程*/
disp(p);
pr=ready;
printf("\n ****当前就绪队列状态为:\n"); /*显示就绪队列状态*/
while(pr!=NULL)
{
disp(pr);
pr=pr->link;
}
}
destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/
{
printf("\n 进程 [%s] 已完成.\n",p->name);
free(p);
}
running() /* 建立进程就绪函数(进程运行时间到,置就绪状态*/
{
(p->rtime)++;
if(p->rtime==p->ntime)
destroy(); /* 调用destroy函数*/
else
{
(p->super)--;
p->state='w';
sort(); /*调用sort函数*/
}
}
main() /*主函数*/
{
int len, h=0;
char ch;
input();
len=space();
while((len!=0)&&(ready!=NULL))
{
ch=getchar();
h++;
printf("\n The execute number:%d \n",h);
p=ready;
ready=p->link;
p->link=NULL;
p->state='R';
check();
running();
printf("\n 按任一键继续......");
ch=getchar();
}
printf("\n\n 进程已经完成.\n");
ch=getchar();
}
5. 非抢占式的静态优先级调度算法 是什么
非抢占式的静态优先级调度算法是指:根据系统的资源分配策略所规定的资源分配算法。
对于不同的的系统和系统目标,通常采用不同的调度算法,例如,在批处理系统中,为了照顾为数众多的段作业,应采用短作业优先的调度算法;又如在分时系统中,为了保证系统具有合理的响应时间,应当采用轮转法进行调度。
目前存在的多种调度算法中,有的算法适用于作业调度,有的算法适用于进程调度;但也有些调度算法既可以用于作业调度,也可以用于进程调度。
6. 优先级调度算法是什么
优先级算法是指在进程创建时先确定一个初始优先数,以后在进程运行中随着进程特性的改变不断修改优先数,这样,由于开始优先数很低而得不到CPU的进程,就能因为等待时间的增长而优先数变为最高而得到CPU运行。
7. 先来先服务调度算法。 优先级调度算法。 短作业优先调度算法 轮转调度算法 响应比高优先调度算法
你试一下
#include<stdio.h>
//using namespace std;
#define MAX 10
struct task_struct
{
char name[10]; /*进程名称*/
int number; /*进程编号*/
float come_time; /*到达时间*/
float run_begin_time; /*开始运行时间*/
float run_time; /*运行时间*/
float run_end_time; /*运行结束时间*/
int priority; /*优先级*/
int order; /*运行次序*/
int run_flag; /*调度标志*/
}tasks[MAX];
int counter; /*实际进程个数*/
int fcfs(); /*先来先服务*/
int ps(); /*优先级调度*/
int sjf(); /*短作业优先*/
int hrrn(); /*响应比高优先*/
int pinput(); /*进程参数输入*/
int poutput(); /*调度结果输出*/
void main()
{ int option;
pinput();
printf("请选择调度算法(0~4):\n");
printf("1.先来先服务\n");
printf("2.优先级调度\n");
printf(" 3.短作业优先\n");
printf(" 4.响应比高优先\n");
printf(" 0.退出\n");
scanf("%d",&option);
switch (option)
{case 0:
printf("运行结束。\n");
break;
case 1:
printf("对进程按先来先服务调度。\n\n");
fcfs();
poutput();
break;
case 2:
printf("对进程按优先级调度。\n\n");
ps();
poutput();
break;
case 3:
printf("对进程按短作业优先调度。\n\n");
sjf();
poutput();
break;
case 4:
printf("对进程按响应比高优先调度。\n\n");
hrrn();
poutput();
break;
}
}
int fcfs() /*先来先服务*/
{
float time_temp=0;
inti;
intnumber_schel;
time_temp=tasks[0].come_time;
for(i=0;i<counter;i++)
{
tasks[i].run_begin_time=time_temp;
tasks[i].run_end_time=tasks[i].run_begin_time+tasks[i].run_time;
tasks[i].run_flag=1;
time_temp=tasks[i].run_end_time;
number_schel=i;
tasks[number_schel].order=i+1;
}
return 0;
}
int ps() /*优先级调度*/
{
float temp_time=0;
inti=0,j;
intnumber_schel,temp_counter;
intmax_priority;
max_priority=tasks[i].priority;
j=1;
while((j<counter)&&(tasks[i].come_time==tasks[j].come_time))
{
if (tasks[j].priority>tasks[i].priority)
{
max_priority=tasks[j].priority;
i=j;
}
j++;
} /*查找第一个被调度的进程*/
/*对第一个被调度的进程求相应的参数*/
number_schel=i;
tasks[number_schel].run_begin_time=tasks[number_schel].come_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
tasks[number_schel].run_flag=1;
temp_time=tasks[number_schel].run_end_time;
tasks[number_schel].order=1;
temp_counter=1;
while (temp_counter<counter)
{
max_priority=0;
for(j=0;j<counter;j++)
{if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))
if (tasks[j].priority>max_priority)
{
max_priority=tasks[j].priority;
number_schel=j;
}
} /*查找下一个被调度的进程*/
/*对找到的下一个被调度的进程求相应的参数*/
tasks[number_schel].run_begin_time=temp_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
tasks[number_schel].run_flag=1;
temp_time=tasks[number_schel].run_end_time;
temp_counter++;
tasks[number_schel].order=temp_counter;
}return 0;
}
int sjf() /*短作业优先*/
{
float temp_time=0;
inti=0,j;
intnumber_schel,temp_counter;
float run_time;
run_time=tasks[i].run_time;
j=1;
while((j<counter)&&(tasks[i].come_time==tasks[j].come_time))
{
if (tasks[j].run_time<tasks[i].run_time)
{
run_time=tasks[j].run_time;
i=j;
}
j++;
} /*查找第一个被调度的进程*/
/*对第一个被调度的进程求相应的参数*/
number_schel=i;
tasks[number_schel].run_begin_time=tasks[number_schel].come_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
tasks[number_schel].run_flag=1;
temp_time=tasks[number_schel].run_end_time;
tasks[number_schel].order=1;
temp_counter=1;
while (temp_counter<counter)
{
for(j=0;j<counter;j++)
{
if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))
{run_time=tasks[j].run_time;number_schel=j;break;}
}
for(j=0;j<counter;j++)
{if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))
if(tasks[j].run_time<run_time)
{run_time=tasks[j].run_time;
number_schel=j;
}
}
/*查找下一个被调度的进程*/
/*对找到的下一个被调度的进程求相应的参数*/
tasks[number_schel].run_begin_time=temp_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
tasks[number_schel].run_flag=1;
temp_time=tasks[number_schel].run_end_time;
temp_counter++;
tasks[number_schel].order=temp_counter;
}return 0;
}
int hrrn() /*响应比高优先*/
{ int j,number_schel,temp_counter;
float temp_time,respond_rate,max_respond_rate;
/*第一个进程被调度*/
tasks[0].run_begin_time=tasks[0].come_time;
tasks[0].run_end_time=tasks[0].run_begin_time+tasks[0].run_time;
temp_time=tasks[0].run_end_time;
tasks[0].run_flag=1;
tasks[0].order=1;
temp_counter=1;
/*调度其他进程*/
while(temp_counter<counter)
{
max_respond_rate=0;
for(j=1;j<counter;j++)
{
if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))
{respond_rate=(temp_time-tasks[j].come_time)/tasks[j].run_time;
if (respond_rate>max_respond_rate)
{
max_respond_rate=respond_rate;
number_schel=j;
}
}
} /*找响应比高的进程*/
tasks[number_schel].run_begin_time=temp_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
temp_time=tasks[number_schel].run_end_time;
tasks[number_schel].run_flag=1;
temp_counter+=1;
tasks[number_schel].order=temp_counter;
}
return 0;
}
int pinput() /*进程参数输入*/
{ int i;
printf("please input the processcounter:\n");
scanf("%d",&counter);
for(i=0;i<counter;i++)
{printf("******************************************\n");
printf("please input the process of %d th :\n",i+1);
printf("please input the name:\n");
scanf("%s",tasks[i].name);
printf("please input the number:\n");
scanf("%d",&tasks[i].number);
printf("please input the come_time:\n");
scanf("%f",&tasks[i].come_time);
printf("please input the run_time:\n");
scanf("%f",&tasks[i].run_time);
printf("please input the priority:\n");
scanf("%d",&tasks[i].priority);
tasks[i].run_begin_time=0;
tasks[i].run_end_time=0;
tasks[i].order=0;
tasks[i].run_flag=0;
}
return 0;
}
int poutput() /*调度结果输出*/
{
int i;
float turn_round_time=0,f1,w=0;
printf("name number come_time run_timerun_begin_time run_end_time priority order turn_round_time\n");
for(i=0;i<counter;i++)
{
f1=tasks[i].run_end_time-tasks[i].come_time;
turn_round_time+=f1;
w+=(f1/tasks[i].run_time);
printf(" %s, %d, %5.3f, %5.3f, %5.3f, %5.3f, %d, %d,%5.3f\n",tasks[i].name,tasks[i].number,tasks[i].come_time,tasks[i].run_time,tasks[i].run_begin_time,tasks[i].run_end_time,tasks[i].priority,tasks[i].order,f1);
}
printf("average_turn_round_timer=%5.2f\n",turn_round_time/counter);
printf("weight_average_turn_round_timer=%5.2f\n",w/counter);
return 0;
}
8. 进程调度方案设计 实现一个基本动态优先级的调度算法
前两天做操作系统作业的时候学习了一下几种进程调度算法,在思考和讨论后,有了一些自己的想法,现在就写出来,跟大家讨论下。,或者说只有有限的CPU资源,当系统中有多个进程处于就绪状态,要竞争CPU资源时,操作系统就要负责完成如何分配资源的任务。在操作系统中,由调度程序来完成这一选择分配的工作,调度程序所使用的算法即是调度算法。调度算法需要考虑的指标主要有尽量保证CPU资源分配的公平性;按照一定策略强制执行算法调度;平衡整个计算机系统,尽量保持各个部分都处于忙碌状态。而根据系统各自不同的特点和要求,调度算法又有一些侧重点和目标不同,因此,算法按照系统差异主要分为三大类:批处理系统中的调度算法,代表调度算法有:先来先服务、最短作业优先、最短剩余时间优先。交互式系统中的调度算法,代表调度算法有:轮转调度、优先级调度、多级队列、最短进程优先、保证调度、彩票调度、公平分享调度。实时系统中的调度算法,代表调度算法有:速率单调调度、最早最终时限优先调度。下面就上述提到的调度算法中挑出几个进行重点分析:保证调度保证调度是指利用算法向用户做出明确的性能保证,然后尽力按照此保证实现CPU的资源分配。利用这种算法,就是定一个进程占用CPU的时间的标准,然后按照这个标准去比较实际占用CPU的时间,调度进程每次使离此标准最远的进程得到资源,不断满足离所保证的标准最远的进程,从而平衡资源分配满足这个标准的要求。保证调度算法的优点是:能很好的保证进程公平的CPU份额,当系统的特点是:进程的优先级没有太大悬殊,所制定的保证标准差异不大,各个进程对CPU的要求较为接近时,比如说系统要求n个进程中的每个进程都只占用1/n的CPU资源,利用保证调度可以很容易的实现稳定的CPU分配要求。但缺点是,这种情况太过理想,当系统的各个进程对CPU要求的紧急程度不同,所制定的保证较为复杂的时候,这个算法实现起来比较困难。彩票调度彩票调度这种算法的大意是指向进程提供各种系统资源如CPU资源的彩票,当系统需要做出调度决策时,随机抽出一张彩票,由此彩票的拥有者获得资源。在彩票调度系统中,如果有一个新的进程出现并得到一些彩票,那么在下一次的抽奖中,该进程会有同它持有彩票数量成正比例的机会赢得奖励。进程持有的彩票数量越多,则被抽中的可能性就越大。调度程序可以通过控制进程的彩票持有数量来进行调度。彩票调度有很多优点:首先,它很灵活,系统增加分给某个进程的彩票数量,就会大大增加它占用资源的可能性,可以说,彩票调度的反应是迅速的,而快速响应需求正是交互式系统的一个重要要求。其次,彩票调度算法中,进程可以交换彩票,这个特点可以更好的保证系统的平衡性,使其各个部分都尽可能的处于忙碌状态。而且利用彩票调度还可以解决许多别的算法很难解决的问题,例如可以根据特定的需要大致成比例的划分CPU的使用。速率单调调度速率单调调度算法是一种可适用于可抢占的周期性进程的经典静态实时调度算法。当实时系统中的进程满足:每个周期性进程必须在其周期内完成,且进程之间没有相互依赖的关系,每个进程在一次突发中需要相同的CPU时间量,非周期的进程都没有最终时限四个条件时,并且为了建模方便,我们假设进程抢占即刻发生没有系统开销,可以考虑利用速率单调算法。速率单调调度算法是将进程的速率(按照进程周期所算出的每秒响应的次数)赋为优先级,则保证了优先级与进程速率成线性关系,这即是我们所说的速率单调。调度程序每次运行优先级最高的,只要优先级较高的程序需要运行,则立即抢占优先级低的进程,而优先级较低的进程必须等所有优先级高于它的进程结束后才能运行。速率单调调度算法可以保证系统中最关键的任务总是得到调度,但是缺点是其作为一种静态算法,灵活性不够好,当进程数变多,系统调度变得复杂时,可能不能较好的保证进程在周期内运行。最早最终时限优先调度最早最终时限优先调度算法是一个动态算法,不要求进程是周期性的,只要一个进程需要CPU时间,它就宣布它的到来时间和最终时限。调度程序维持一个可运行的进程列表,按最终时限排序,每次调度一个最终时限最早的进程得到CPU 。当新进程就绪时,系统检查其最终时限是否在当前运行的进程结束之前,如果是,则抢占当前进程。由于是动态算法,最早最终优先调度的优点就是灵活,当进程数不超过负载时,资源分配更优,但也同样由于它的动态属性,进程的优先级都是在不断变化中的,所以也没有哪个进程是一定可以保证满足调度的,当进程数超过负载时,资源分配合理度会急速下降,所以不太稳定。
9. 静态抢占式优先级调度算法是如何进行的
按照优先级值的大小进行调度,选择优先级值大的作业优先调度。抢占式是指如果进入的作业的优先级数大于当前正在执行的作业的优先级数,就执行进入的作业,抢占了当前正在执行的作业的资源。
按照到达时间将作业放入就绪队列,当前作业执行过程中有作业进入,根据作业的优先级值进行判断,如果进入的作业的优先级值小于或等于当前执行的作业的优先级值,继续执行当前作业;如果进入的作业的优先级值大于当前执行的作业的优先级值,将资源给进入的作业,当前的作业就放入就绪队列队尾,此时还需要的服务时间为原服务时间-进入的作业的到达时间。之后,每到达一个作业就与当前执行的作业进行优先级值比较,优先级值大的优先执行。当当前执行的作业执行结束后,比较就绪队列中的作业的优先级值,优先级值大的优先执行。如此执行,直到就绪队列为空,结束调度。
10. 作业调度算法的优先级法
优先级算法(Priority Scheling)是多级队列算法的改进,平衡各进程对响应时间的要求。适用于作业调度和进程调度,可分成抢先式和非抢先式。 作业调度中的静态优先级大多按以下原则确定:
由用户自己根据作业的紧急程度输入一个适当的优先级。
由系统或操作员根据作业类型指定优先级。
系统根据作业要求资源情况确定优先级。
进程的静态优先级的确定原则:
按进程的类型给予不同的优先级。
将作业的情态优先级作为它所属进程的优先级。 进程的动态优先级一般根据以下原则确定:
根据进程占用有CPU时间的长短来决定。
根据就绪进程等待CPU的时间长短来决定。