导航:首页 > 源码编译 > 信道编译码及纠错性能研究与分析

信道编译码及纠错性能研究与分析

发布时间:2022-10-03 09:23:27

Ⅰ 信道是什么

  1. 信道是传送信息的物理性通道。信息是抽象的,但传送信息必须通过具体的媒质。例如二人对话,靠声波通过二人间的空气来传送,因而二人间的空气部分就是信道。邮政通信的信道是指运载工具及其经过的设施。

  2. 无线电话的信道就是电波传播所通过的空间,有线电话的信道是电缆。每条信道都有特定的信源和信宿。在多路通信,例如载波电话中,一个电话机作为发出信息的信源,另一个是接收信息的信宿,它们之间的设施就是一条信道,这时传输用的电缆可以为许多条信道所共用。

  3. 每条信道都有特定的信源和信宿。在多路通信,例如载波电话中,一个电话机作为发出信息的信源,另一个是接收信息的信宿,它们之间的设施就是一条信道,这时传输用的电缆可以为许多条信道所共用。在理论研究中,一条信道往往被分成信道编码器、信道本身和信道译码器。

  4. 人们可以变更编码器、译码器以获得最佳的通信效果,因此编码器、译码器往往是指易于变动和便于设计的部分,而信道就指那些比较固定的部分。但这种划分或多或少是随意的,可按具体情况规定。例如调制解调器和纠错编译码设备一般被认为是属于信道编码器、译码器的,但有时把含有调制解调器的信道称为调制信道;含有纠错编码器、译码器的信道称为编码信道。

Ⅱ 数字电视系统的三大关键技术是什么

一、数字电视的信源编译码技术
数字电视尤其数字高清晰度电视与模拟电视相比,在实现过程中,最为困难的部分就是对视频信号和音频信号的压缩。数字电视的图像不能象模拟电视的图像和声音那样直接传输,而是要多一道压缩编码工序。视频编码技术主要功能是完成图像的压缩,使数字电视的信号传输量由995Mbit/s减少为20~30Mbit/s。与视频编译码相同,音频编译码主要功能是完成声音信息的压缩。在HDTV视频压缩编译码标准方面,都采用MPEG-2标准。MPEG压缩后的信息可以供计算机处理,也可以在现有和将来的电视广播频道中进行分配。在音频编码方面,欧洲、日本采用了MPEG-2标准;美国采纳了杜比(Dolby)公司的AC-3方案,MPEG-2为备用方案。
二、数字电视的复用系统
数字电视的复用系统是HDTV的关键部分之一。从发送端信息的流向来看,它将视频、音频、辅助数据等编码器送来的数据比特流,经处理复合成单路串行的比特流,送给信道编码及调制。接受端与此过程正好相反。在HDTV复用传输标准方面,都采用了MPEG-2 标准。
三、数字电视的信道编译码及调制解调
数字电视信道编译码及调制解调的目的是通过纠错编码、网格编码、均衡等技术提高信号的抗干扰能力,通过调制把传输信号放在载波或脉冲串上,为发射做好准备。目前所说的各国数字电视的制式,标准不能统一,主要是指各国在该方面的不同,具体包括纠错、均衡等技术的不同,带宽的不同,尤其是调制方式的不同。
数字传输的常用调制方式:
•正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。
•键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。
•残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。
•编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。

Ⅲ 题目,信道编码和信源编码有什么不同,纠错码能检错和纠错的原因

纠错码(error correcting code),在传输过程中发生错误后能在收端自行发现或纠正的码。仅用来发现错误的码一般常称为检错码。为使一种码具有检错或纠错能力,须对原码字增加多余的码元,以扩大码字之间的差别 ,即把原码字按某种规则变成有一定剩余度(见信源编码)的码字,并使每个码字的码之间有一定的关系。关系的建立称为编码。码字到达收端后,可以根据编码规则是否满足以判定有无错误。当不能满足时,按一定规则确定错误所在位置并予以纠正。纠错并恢复原码字的过程称为译码。检错码与其他手段结合使用,可以纠错。

纠错编码又称信道编码,它与信源编码是信息传输的两个方面。它们之间存在对偶的关系。应用信道译码直接对一些自然信息进行处理,可以去掉剩余度,以达到压缩数据的目的。
为了使一种码具有检错或纠错能力,必须对原码字增加多余的码元,以扩大码字之间的差别,使一个码字在一定数目内的码元上发生错误时,不致错成另一个码字。准确地说,即把原码字按某种规则变成有一定剩余度的码字,并使每个码字的码元间有一定的关系。关系的建立称为编码。码字到达收端后,用编码时所用的规则去检验。如果没有错误,则原规则一定满足,否则就不满足。由此可以根据编码规则是否满足以判定有无错误。当不能满足时,在可纠能力之内按一定的规则确定错误所在的位置,并予以纠正。纠错并恢复原码字的过程称为译码;码元间的关系为线性时,称为线性码;否则称为非线性码。检错码与其他手段结合使用,可以纠错。检错反馈重发系统(ARQ系统)就是一例。
在构造纠错码时,将输入信息分成k位一组以进行编码。若编出的校验位仅与本组的信息位有关,则称这样的码为分组码。若不仅与本组的k个信息位有关,而且与前若干组的信息位有关,则称为格码。这种码之所以称为格码,是因为用图形分析时它象篱笆或格架。线性格码在运算时为卷积运算,所以叫卷积码。

Ⅳ 信道编码都有哪些

1、信道编码的种类主要包括:线性分组码、卷积码、级联码、Turbo码和LDPC码。

2、其中分组码又分为:汉明码,格雷码,循环码(BCH码,RS码,CRC循环冗余校验码。

信道编码,也叫差错控制编码,是所有现代通信系统的基石。

几十年来,信道编码技术不断逼近香农极限,波澜壮阔般推动着人类通信迈过一个又一个顶峰,信道编码在发送端对原数据添加冗余信息,这些冗余信息是和原数据相关的,再在接收端根据这种相关性来检测和纠正传输过程产生的差错,这些加入的冗余信息就是纠错码,用它来对抗传输过程的干扰。

(4)信道编译码及纠错性能研究与分析扩展阅读:

作用

数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。

所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。

误码的处理技术有纠错、交织、线性内插等。

Ⅳ 为什么要信道编码信道编码与信源编码的主要差别是什么

信源编码的作用一是将模拟信号转化为数字信号,二是对数据进行压缩;信道编码则是通过添加一定的校验位,来提高码自身的纠错能力的手段。

信源编码是完成A/D转换。信道编码是将信源编码器输出的机内码转换成适合于在信道上传输的线路码,完成码型变换。

不同之处在于信源编码目标是以尽可能少的符号表达尽可能多的信息,这样能最大程度利用信源发出的每一个信号;而信道编码目标是使传输的信道尽可能可靠。所以会在信源编码的基础上增加冗余和校验信息。

(5)信道编译码及纠错性能研究与分析扩展阅读:

信道编码之所以能够检出和校正接收比特流中的差错,是因为加入一些冗余比特,把几个比特上携带的信息扩散到更多的比特上。为此付出的代价是必须传送比该信息所需要的更多的比特。

由于移动通信存在干扰和衰落,在信号传输过程中将出现差错,故对数字信号必须采用纠、检错技术,即纠、检错编码技术,以增强数据在信道中传输时抵御各种干扰的能力,提高系统的可靠性。对要在信道中传送的数字信号进行的纠、检错编码就是信道编码。

Ⅵ 信道编码的纠错码的各种类型

卷积码非常适用于纠正随机错误,但是,解码算法本身的特性却是:如果在解码过程中发生错误,解码器可能会导致突发性错误。为此在卷积码的上部采用RS码块,RS码适用于检测和校正那些由解码器产生的突发性错误。所以卷积码和RS码结合在一起可以起到相互补偿的作用。卷积码分为两种:
(1)基本卷积码:
基本卷积码编码效率为,η=1/2,编码效率较低,优点是纠错能力强。
(2)收缩卷积码
如果传输信道质量较好,为提高编码效率,可以采样收缩截短卷积码。有编码效率为:η=1/2、2/3、3/4、5/6、7/8这几种编码效率的收缩卷积码。
编码效率高,一定带宽内可传输的有效比特率增大,但纠错能力越减弱。 1993年诞生的Turbo码,单片Turbo码的编码/解码器,运行速率达40Mb/s。该芯片集成了一个32×32交织器,其性能和传统的RS外码和卷积内码的级联一样好。所以Turbo码是一种先进的信道编码技术,由于其不需要进行两次编码,所以其编码效率比传统的RS+卷积码要好。
3.4GSM系统中的信道编码
GSM系统把20ms语音编码后的数据作为一帧,共260bit,分成50个最重要比特、132个次重要比特和78个不重要比特。
在GSM系统中,对话音编码后的数据既进行检错编码又进行纠错编码。如图5所示。

首先对50个最重要比特进行循环冗余编码(CRC),编码后为53bit;再将该53bit与次重要的132bit一起进行约束长度为K=5,编码效率为R=1/2的卷积编码,编码后为2(53+132+4)=378bit;最后再加上最不重要的78bit,形成信道编码后的一帧共456bit。
3.5IS-95系统中的信道编码
(1)正向链路上的信道编码
在IS-95系统中,正向链路上是以不同的沃尔什(Walsh)函数来区分不同的物理信道的。在用沃尔什函数进行直接扩频调制之前,要对话音数据或信令数据进行编码效率R=1/2、约束长度为K=9的信道编码。由于CDMA系统是受自身干扰的系统,各业务信道上的发射功率受到严格的限制。当系统中使用同一频率信道的用户较多时,对每个用户而言,接收信噪比就降低。所以,CDMA系统的话音编码被设计为多速率的。当接收信噪比较高时,采用较高速率的话音编码,以获得较好的接收话音质量;当接收信噪比较低时,就采用较低的话音编码速率。较低速率的话音编码数据经卷积编码后,可进行字符重复。语音编码数据速率越低,卷积编码后字符可重复的次数越多,使得在较差信道上传输的信号获得更多的保护。
(2)反向链路上的信道编码
IS-95系统中,反向链路上是用不同的长伪随机序列来区分不同的物理信道的。在用长伪随机序列进行直接扩频调制之前,要对语音数据或信令数据进行编码效率R=1/3(速率集1)或R=1/2(速率集2)、约束长度为K=9的信道编码。由于同样的原因,语音编码同样被设计为多速率的。当接收信噪比较低时。可采用较低的话音编码速率、字符重复的方法,提高在信道上传输时的抗干扰性能。 在实际应用中,比特差错经常成串发生,这是由于持续时间较长的衰落谷点会影响到几个连续的比特,而信道编码仅在检测和校正单个差错和不太长的差错串时才最有效(如RS只能纠正8个字节的错误)。为了纠正这些成串发生的比特差错及一些突发错误,可以运用交织技术来分散这些误差,使长串的比特差错变成短串差错,从而可以用前向码对其纠错,例如:在DVB-C系统中,RS(204,188)的纠错能力是8个字节,交织深度为12,那么纠可抗长度为8×12=96个字节的突发错误。
实现交织和解交织一般使用卷积方式
交织技术对已编码的信号按一定规则重新排列,解交织后突发性错误在时间上被分散,使其类似于独立发生的随机错误,从而前向纠错编码可以有效的进行纠错,前向纠错码加交积的作用可以理解为扩展了前向纠错的可抗长度字节。纠错能力强的编码一般要求的交织深度相对较低。纠错能力弱的则要求更深的交织深度。
一般来说,对数据进行传输时,在发端先对数据进行FEC编码,然后再进行交积处理。在收端次序和发端相反,先做去交积处理完成误差分散,再FEC解码实现数据纠错。另外,从上图可看出,交积不会增加信道的数据码元。
根据信道的情况不同,信道编码方案也有所不同,在DVB-T里由于由于是无线信道且存在多径干扰和其它的干扰,所以信道很“脏”,为此它的信道编码是:RS+外交积+卷积码+内交积。采用了两次交积处理的级联编码,增强其纠错的能力。RS作为外编码,其编码效率是188/204(又称外码率),卷积码作为内编码,其编码效率有1/2、2/3、3/4、5/6、7/8五种(又称内码率)选择,信道的总编码效率是两种编码效率的级联叠加。设信道带宽8MHZ,符号率为6.8966Ms/S,内码率选2/3,16QAM调制,其总传输率是27.586Mbps,有效传输率是27.586*(188/204)*(2/3)=16.948Mbps,如果加上保护间隔的插入所造成的开销,有效码率将更低。
在DVB-C里,由于是有线信道,信道比较“干净”,所以它的信道编码是:RS+交积。一般DVB-C的信道物理带宽是8MHZ,在符号率为6.8966Ms/s,调制方式为64QAM的系统,其总传输率是41.379Mbps,由于其编码效率为188/204,所以其有效传输率是41.379*188/204=38.134Mbps。
在DVB-S里,由于它是无线信道,所以它的信道编码是:RS+交积+卷积码。也是级联编码。
下图是DVB-T、DVB-C、DVB-S各自的信道编码方式: 进行基带信号传输的缺点是其频谱会因数据出现连“1”和连“0”而包含大的低频成分,不适应信道的传输特性,也不利于从中提取出时钟信息。解决办法之一是采用扰码技术,使信号受到随机化处理,变为伪随机序列,又称为“数据随机化”和“能量扩散”处理。扰码不但能改善位定时的恢复质量,还可以使信号频谱平滑,使帧同步和自适应同步和自适应时域均衡等系统的性能得到改善。
扰码虽然“扰乱”了原有数据的本来规律,但因为是人为的“扰乱”,在接收端很容易去加扰,恢复成原数据流。
实现加扰和解码,需要产生伪随机二进制序列(PRBS)再与输入数据逐个比特作运算。PRBS也称为m序列,这种m序列与TS的数据码流进行模2加运算后,数据流中的“1”和“0”的连续游程都很短,且出现的概率基本相同。
利用伪随机序列进行扰码也是实现数字信号高保密性传输的重要手段之一。一般将信源产生的二进制数字信息和一个周期很长的伪随即序列模2相加,就可将原信息变成不可理解的另一序列。这种信号在信道中传输自然具有高度保密性。在接收端将接收信号再加上(模2和)同样的伪随机序列,就恢复为原来发送的信息。
在DVB-C系统中的CA系统原理就源于此,只不过为了加强系统的保密性,其伪随机序列是不断变化的(10秒变一次),这个伪随机序列又叫控制字(CW)。
现在出现一种新的信道编码方法。LDPC编码。LDPC编码是最接近香农定理的一种编码。

Ⅶ 纠错码的基本原理和性能参数

纠错码能够检错或纠错,主要是靠码字之间有较大的差别。这可用码字之间的汉明距离d(x,y)来衡量。它的定义为码字x与y之间的对应位取不同值的码元个数。一种纠错码的最小距离d定义为该种码中任两个码字之间的距离的最小值。一种码要能发现e个错误,它的最小距离d应不小于e+1。若要能纠正t个错误,则d应不小于2t+1。一个码字中非零码元的个数,称为此码字的汉明重量。一种码中非零码字的重量的最小值,称为该码的最小重量。对线性码来说,一种码的最小重量与其最小距离在数值上是相等的。
在构造线性码时,数字上是从n维空间中选一k维子空间,且使此子空间内各非零码字的重量尽可能大。当构造循环码时,可进一步将每一码字看成一多项式,将整个码看成是多项式环中的理想,这一理想是主理想,故可由生成多项式决定;而多项式完全可由它的根规定。这样,就容易对码进行构造和分析。这是BCH码等循环码构造的出发点。一般地说,构造一种码时,均设法将它与某种代数结构相联系,以便对它进行描述,进而推导它的性质,估计它的性能和给出它的译码方法。若一种码的码长为n,码字数为M,或信息位为h,以及最小距离为d,则可把此码记作【n,M,d】码。若此码为线性码,常简记作(n,k)或(n,k,d)码。人们还常用R=log2M/n表示码的信息率或简称码率,单位为比特/码元。R越大,则每个码元所携带的信息量越大,编码效率越高。 纠错码实现中最复杂的部分是译码。它是纠错码能否应用的关键。根据式(1),采用的码长n越大,则误码率越小。但n越大,编译码设备也越复杂,且延迟也越大。人们希望找到的译码方法是:误码率随码长n的增加按指数规律下降;译码的复杂程度随码长n的增加接近线性地增加;译码的计算量则与码长n基本无关。可惜,已经找到的码能满足这样要求的很少。不过由于大规模集成电路的发展,即使应用比较复杂的但性能良好的码,成本也并不太高。因此,纠错码的应用越来越广泛。
纠错码传输的都是数字信号。这既可用硬件实现,也可用软件实现。前者主要用各种数字电路,主要是采用大规模集成电路。软件实现特别适合计算机通信网等场合。因为这时可以直接利用网中的计算机进行编码和译码,不需要另加专用设备。硬件实现的速度较高,比软件可快几个数量级。
在传信率一定的情况下,如果采用纠错码提高可靠性,要求信道的传输率增加,带宽加大。因此,纠错码主要用于功率受限制而带宽较大的信道,如卫星、散射等系统中。纠错码还用在一些可靠性要求较高,但设备或器件的可靠性较差,而余量较大的场合,如磁带、磁盘和半导体存储器等。
在分组码的研究中,谱分析的方法受到人们的重视。纠同步错误码、算术码、不对称码、不等错误纠正码等,也得到较多的研究。 分组码是对信源待发的信息序列进行分组(每组K位)编码,它的校验位仅同本组的信息位有关。自20世纪50年代分组码的理论获得发展以来,分组码在数字通信和数据存储系统中已被广泛应用。
分组码的码长n和码字个数M是一个码的主要构造参数。码长为n的码中所有码字的位数均为n;若要用一个码传送k比特信息,则码字的个数M必须满足。典型的分组码是由k位信息位和r位监督位组成的,这样构成的码一般称为系统码。
分组码中应用最广的线性分组码。线性分组码中的M个码字之间具有一定线性约束关系,即这些码字总体构成了n维线性空间的一个k维子空间。称此k维子空间为(n,k)线性分组码。线性系统码的特点是每个码字的前k位均由这个码字所对应的信息位组成,并通过对这k位信息位的线性运算得到后面n—k是位监督位。
线性分组码中应用最广的是循环码,循环码的主要特征是任何码字在循环移位后个码字。循环码的优点在于其编码和解码手续比一般线性码简单,因而易于在设备上实现。在循环码中,码字可表示为多项式。循环码的码字多项式都可表示成为循环码的生成多项式与这个码字所代表的信息多项式的乘积,即,因此一个循环码可以通过给出其生成多项式来规定。常用的循环码有BCH码和RS码。
网格码有多种描述方法,网格图是常用方法之一,它能表示出编码过程。一个码率为1/2、包含四种状态的网格码的网格图如图所示。图1中00,01,10,11表示编码器所具有的四种状态,以“·”示出,从每一状态出发都存在两条支路,位于上面的一条支路对应于编码器输入为“0”的情况,位于下面的一条支路对应于编码器输入为“1”的情况,而每一支路上所列出的两个二进位码则表示相应的编码输出。因而可知,编码输出不仅决定于编码器的当前输入,还决定于编码器的状态,例如在图中从“00”状态出发;,若输入的二进制数据序列为1011,则编码器的状态转移过程为00→01→10→01→11,而相应的编码输出序列为11010010。在网格图中任意两条从同一状态出发;,经不同的状态转移过程后又归于另一相同状态(该状态也可与初始状态相同)的路径间的距离的最小值称为码的自由距离。如该图中的为5。对于卷积码来说,的计算可简化为始于且终于零状态的非全零路径与全零路径间距离的最小值。是表征网格码纠错能力的重要参数。维特比算法是广泛采用的网格码的译码方法。由于网格码的状态越多,译码越复杂,所以状态个数是度量网格码译码复杂性的重要参数。一般说来可以通过增大译码复杂性来增加,从而提高码的纠错能力。
BCH码、网格码已被广泛地应用于移动通信、卫星通信和频带数据传输中。RS码也被广泛应用于光盘的存储中。
大多数纠错码是设计来纠随机误码的,可以通过交织的方法使它适用于对突发误码的纠错。交织是一种使得集中出现的突发误码在解码时进行分散化的措施,从而使其不超出纠错码的纠错能力范围。 卷积码不对信息序列进行分组编码,它的校验元不仅与当前的信息元有关,而且同以前有限时间段上的信息元有关。卷积码在编码方法上尚未找到像分组码那样有效的数学工具和系统的理论。但在译码方面,不论在理论上还是实用上都超过了分组码,因而在差错控制和数据压缩系统中得到广泛应用。

Ⅷ 分析DVB-C标准传输系统的信道编码技术

国内外现有的大量有线数字电视传输终端设备,如QAM调制解调器、DVB-C机顶盒等,都是按照DVB-C标准设计的。这些设备的主要功能包括信道编解码、QAM调制/解调以及MPEG复用/解复用等等。另一方面目前国内大多数光纤传输设备(SDH等)及电缆传输设备都提供了丰富的E1接口,在这类接口信道上主要进行点对点的单路基带传输。然而目前支持E1接口的数字视频终端设备,如MPEG-2编解码器等,大都没有整合信道编码的功能。为了在这类传输设备上可靠地传输数字多媒体数据,需要在MPEG-2信源压缩编解码设备和E1接口之间加入具有一定抗误码能力的信道编解码设备。这里的信道编解码设备并不需要进行QAM调制和多路复用,因此针对这一应用背景,我们提出了一种基于DVB-C标准、简单实用的信道编解码器的设计方案。2设计与实现2.1系统原理图1为信道编解码器设计的原理框图,信道编解码器主要实现信道编解码和E1接口适配两大功能。在发端,信道编码器对输入的同步并行接口(SPI)信号进行码速率调整,一方面提供信道编码所需的数据帧结构,另一方面将码速率调整为E1接口额定的2048Kbps。

经过信源编码和系统复接后生成的节目传送码流,通常需要通过某种传输媒介才能到达用户接收机。传输媒介可以是广播电视系统(如地面电视广播系统、卫星电视广播系统或有线电视广播系统),也可以是电信网络系统,或存储媒介(如磁盘、光盘等),这些传输媒介统称为传输信道。通常情况下,编码码流是不能或不适合直接通过传输信道进行传输的,必须经过某种处理,使之变成适合在规定信道中传输的形式。在通信原理上,这种处理称为信道编码(ChannelCoding)(与信源编码相对应),实现信道编码的系统称为传输系统(Tran在工程应用中,信道编码过程一般被分为两环节:负责传输误码的检测和校正的环节称为信道编解码,负责信号变换和频带搬移的环节称为调制解调。一个实际的数字传输系统至少要包括上述两个环节中的一个环节,一般DVB的系统都是由上述两个环节构成的,因此DVB系统常被称为DVB信道编解码器与调制解调器。
我们知道,MPEG-2的TS码流是经过了高倍压后的数字电视信号压缩编码大大节省了传输频道,提高了频道利用率,但同时也付出了一个代价?就是对传输干扰变得十分敏感。例如传输过程中的噪声干扰,在模拟电视中一般仅造成雪花干扰,但在数字电视中则可能在恢复图像中造成大块的失真,严重时甚至使整个系统无法工作。定性而论,压缩倍数越高,数字电视对传输干扰的抵抗能力越弱,即同样的传输干扰在解码恢复图像或声音中造成的损伤就越严重,对传输可靠性的要求也就越高。美国“大联盟(GA:GrandAlliance)”系统中规定,传输系统必须将传输误码纠正到10-6以下,解码器才能正常工作;而欧洲DVB-S标准中则要求传输系统将传输误码纠正到10-10-10-11的水平。可以看出,上述指标对数字电视的传输系统的要求是相当高的,不仅远高于模拟电视系统,甚至高于一般的数字通信系统,如数字电话传输系统中,误码率通常仅要求为10-3-10-6。为满足这种指标要求,近年来各国在DVB的传输系统方面进行了大量的研究,很多数字通信领域里的前沿新技术被应用于DVB传输系统中。----与其它事物的发展历程一样,DVB传输统也经历了一个从落后到先进,从模拟到数字的发展过程。DVB的发展实际上起源于高清晰度电视(HDTV的研究。日本NHK于七十年代初开始HDTV的研究,于1984年公布了世界上第一个HDTV统方案---MSE,由于在其研究过程中数字通信技还不十分成,MUSE的传输系统采用的是模拟通信技术,使用模拟调频技术通过卫星进行广播。其后,在西欧英,法,西德等多国共同参加的尤里卡95计划,提出了以复用模拟分量(MAC)制为基础的HDTV方案-D-MAC,HD-MAC的传输系统仍然采用了模拟通信技术,同样使用了模拟调频技术,通过卫星进行广播。可以看出,八十年代中期以前,模拟通信技术在新一带电视传输的研究中占了上风。由于数字通信技术固有的“门限效应”,有可能使得相邻的两个用户中的一个户能够很好地接收节目,而另一个则完全收不到节目。因此当时国际上对未来一代电视传输系统是采用数字通信技术还是模拟通信术争论十分激烈,甚至不少专家权威都倾向于模拟通技术。----8年代中期以后,数字通信技术得到了迅猛发和日益广泛的应用,在越来越多的应用领域取代了模拟通信技术。这一变化也深刻影响到DVB及HDTV传输系统的发展。突破性的进展发生在90年代初,由美国联邦通信委员会(FCC)组建的先进电视顾问委员会(ACATS)对当时向ACATS提交的六套HDTV?在美国被称为“先进电视(ATV)”系统进行了测试和比较。这六套系统中包括ACTV和日本的MUSE两套模拟传输系统,以及DigiCipher、DSC-HDTV、ADTV和CC-DigiCipher四套数字传输系统。从1993年ACATS公布的测试结果来看,四套数字传输系统的性能均明显优于模拟传输系统。这一测试结果结束了新一代数字电视及HDTV的传输系统中数字通信技术与模拟通信技术之争,确立了数字通信技术的地位,从此,全数字系统?即数字压缩编码和数字传输的思想成为数字电视和HDTV研究的基本思想。----从那时起,全数字式的数字电视及HDTV得到了迅猛发展,各国纷纷提出了多种系统方案,并根据传输系统方案的不同逐渐以美国和欧洲为核心形成了两大体制:
美国在1993年ACATS所测试的四套全数字ATV系统的基础上,于1993年5月成立了由四套系统的开发者共同组成的“大联盟(GA:GrandAlliance)”。经过进一步的测试比较,GA发现DSC-HDTV的VSB传输系统方案的性能优于其它三种系统。1995年11月,GA系统方案被ACATS正式提交给FCC,方案规定其传输系统以地面广播为主要传输模式,采用8-VSB方案;以有线电视(CATV)为辅助传输模式,采用16-VSB方案。GA系统方案已于1996年12月被FCC接受为美国ATV的国家标准。
在欧洲,HD-MAC虽然在1992年的巴塞罗那奥运会上被试用,但到1993年时欧共体已决定放弃HD-MAC,而将目标转向全数字式的数字电视和HDTV上。在这前后欧洲推出的方案主要有:英国NTL的SPECTRE数字电视系统、法国Thomson的DIAMONDHDTV系统、法国CCETT的SPERNEHDTV系统和瑞典、丹麦、挪威合作开发的HD-DIVISION系统,这些系统的一个突出特点是传输系统中采用了一种新型的并行传输技术?编码正交频分复用(COFDM)技术。由于HDTV节目源稀少,制作困难,难以形成市场,欧洲随即将目标转向了标准数字电视(DTV)上,并成立了专门的机构,发布了一系列标准,这就是DVB标准。实际上,对传输系统而言,DVB与HDTV是没有区别的,因为传输系统所面临的传输对象都是二元比特流,为HDTV所开发的传输系统和传输技术都可以移植到数字电视系统中。DVB是一个系列化的全数字电视标准,根据不同的传输媒介采用不同的传输系统,地面广播模式中采用COFDM系统,CATV模式中64QAM系统,卫星广播模式中采用QPSK系统。
综上所述,DVB以及HDTV经过二十余年的探索,目前各国在视频音频编码方案上已统一于MPEG-2标准,分歧主要集中于传输系统上。根据所采用的传输系统方案,以美国GA系统和欧洲DVB系统为代表,形成了两大流派。从目前的对比结果来看,这两种系统在技术上难分优劣,并已发展成为各自国家或地区的数字电视及HDTV的标准。可以说,未来DVB及HDTV的体制是统一于一种世界标准,还是象现行模拟电视一样多种体制并存,主要就取决于这两种流派在传输系统方案上能否融合成一种系统。由于这一原因,使得传输系统成为当今世界DVB及HDTV领域分歧最大,争论最多,也是最热门的研究课题。DVB传输系统
DVB是一个系列标准,各标准在视频音频编码方案和系统复接方案上是一致的,都符合MPEG-2标准,区别主要在于传输系统采用不同的方案,分别适用于不同的传输媒介和应用环境。截止到1997年已发布的DVB标准及适用的传输媒介如下:DVB-S(Satellite):采用11/12GHz卫星频段进行传输的DVB系统标准,广泛适用于各种转发器的频带和功放。DVB-C(Cable):采用有线电视系统进行传输的DVB系统标准。DVB-T(Terrestrial):采用地面广播进行传输的DVB系统标准。DVB-CS:采用共用电视天线(SMATV)接入用户的DBV系统标准,可与DVB-C或DVB-S联合使用。DVB-MC:在DVB-C传输系统基础上,采用10GHz以下频率的MMDS直接向观众家庭传送的DVB系统标准。DVB-MS:在DVB-S传输系统基础上,采用10GHz以上频率的MMDS直接向观众家庭传送的DVB系统标准。DVB-SI:DVB服务信息系统标准,它使得DVB解码器能够进行自我配置,并帮助用户浏览DVB环境。DVB-TXT:DVB固定格式的图文电视标准。DVB-CI:DVB条件接收以及其它应用的公共接口标准。DVB-RCT:DVB在有线电视传播系统中的上行回传信道标准。DVB-RCC:DVB在共用电话交换网(PSTN)和综合业务数字网(ISDN)中的上行回传信道标准。DVB-NIP:DVB双向交互业务中与具体传输网络无关的协议标准。DVB-PDH:DVB与准同步数字系列(PDH)网络的接口标准。DVB-SDH:DVB与同步数字系列(SDH)网络的接口标准。DVB-M:DVB系统的测试指标。DVB-PI:DVB与有线电视和SMATV前端的接口标准。DVB-IRDI:DVB综合接收机/解码器(IRD)的接口标准。
DVB系列标准中的传输系统可分为三类:第一类适用于广播信道,如DVB-S、DVB-C、DVB-T、DVB-CS、DVB-MC、DVB-MS等,这一类系统要通过高频信道进行广播,因此其传输系统包含了信道编解码和调制解调两个环节;第二类适用于PDH电信网络,如DVB-PDH,这一类系统通过基带传输,传输系统仅包含了信道编解码环节;第三类适用于SDH电信网络,如DVB-SDH,这一类系统也是通过基带传输的,但一般不需传输系统。数字通信与模拟通信
DVB传输系统是一个全数字的通信系统,它与传统的模拟电视传输系统有着本质性的区别,在全面介绍DVB传输系统之前,我们首先简要讨论一下数字通信技术与模拟通信技术的关系。
通信中有两个基本概念:信息和信号。根据信息论的定义,信号是信息的载体,也就是说,信息总是以某种具体的信号的形式表示的,并且通过信号在实际的传输系统中进行传输。具体到DVB系统中,信息就是电视台所要传送给用户的节目,而信号就是用于表示和传输节目的亮度信号、色度信号和伴音信号,以及进一步变换产生的实际传输的电视信号。信息与表示和承载它的信号之间存在着对应关系,这种关系称为“映射”,接收端正是根据事先约定的映射关系从接收信号中提取发射端发送的信息的。信息与信号间的映射方式可以有很多种,不同的通信技术就在于它们所采用的映射方式不同。
在传统的模拟通信中,信号是“连续地”与信息进行映射的。这种连续性表现在两个方面:在时间上,信号在每一个时刻都承载着新的信息;在数值上,在系统设计规定的范围内信号的每一种数值都代表着不同的信息。从接收者的角度看,接收信号在每一个时刻上的每一种数值都代表着发送端发送出来了新的信息。例如在模拟电视中,接收到的Y信号在正程时间内的每一时刻上的每一个合法幅值都代表着节目灰度级的变化。
在数字通信中,信号是“离散地”与信息进行映射的。这种离散性也表现在两个方面:在时间上,信号是以一个基本周期T为单位与信息进行映射的,在同一个周期内的各时刻上的信号都对应同一个信息,例如在二元数字通信系统中,一个传输周期内的信号都代表着同一个“0”信息或“1”信息;在数值上,只有有限的几个规定的信号数值是合法的,代表着信息,其它数值都是非法的。例如在二元数字系统中,只有两种合法的信号数值,而在四元数字系统中,只有四种信号数值是合法的。
通信系统的目的是传输信息,衡量通信系统质量的最主要的指标有两个:传输信息的可靠性和有效性。可靠性是指接收信息的准确度,而有效性是指在单位频道内能够传输的信息量的多少。对一个通信系统而言,这两个指标是互为矛盾而又互相联系的,在实际应用中常牺牲一项指标而换取另一项指标。下面我们就从可靠性和有效性方面说明为什么数字通信优于模拟通信。
数字通信与模拟通信在映射方式上的差异,导致了它们在抵抗传输干扰的能力上大为不同。模拟通信中,传输信号在任何时刻由于传输干扰而发生的任何数值上的变化,都将导致所传信息的失真,因为在规定范围内的任何信号数值都是合法的,接受机无法分辨所接收到的信号数值是由于传输干扰而发生了变化,还是发送端本来发送的就是这一数值。也就是说,信号波形的每一点失真都会导致信息丢失。数字通信则不同,由于在一个传输周期内的信号所传输的都是同一信息,接收机只须提取其中一个时刻点上的信号就可知道发送端在这个周期内发出的信息,这一时刻点称为采样点。因此在数字通信中信号波型的失真并不一定会引起信息丢失,只有采样点上的信号受到了传输干扰才有可能造成信息丢失,其它时刻都是无所谓的。采样点上的信号只有几个合法数值,即是发送端可能发送的,当接收信号由于传输过程中的干扰而发生数值上的变化时,就会成为非法数值。接收机首先可以发现这种信号失真,然后将接收信号与各合法信号数值做比较,按照最近临的原则将其判决为与之最接近的合法信号数值。这样当传输干扰不太大时,数字通信技术就有可能纠正信号失真而不发生信息丢失。例如在一个二元数字通信系统中,发送端发出“1”、“0”两种信息,分别以幅度为+A和-A两种方波信号表示和传输,映射关系为+A信号代表发送端发出的是“1”,-A信号表示发送端发出的是“0”。
其中T代表方波信号的传输周期,m和n代表采样点。经过信道传输后,由于信道中的干扰和失真,使得接收信号的波形发生了变化。在采样点m处,信号幅度由+A变为+B,在采样点n处,信号幅度由-A变为-C。由于只有+A和-A是合法的信号幅值,接受机在采样到+B和-C信号数值后就会判定传输信号发生了失真。然后接收机根据最近临原则将+B和-C分别与+A、-A两个合法数值进行比较,由于+B更接近于+A,接收机就判定采样点m处发送端发出的信号实际上是+A;同样由于-C更接近于-A,接收机判定采样点n处发送端发出的信号实际上是-A。根据收发两端约定的映射规则,信号+A对应于信息“1”,-A对应于“0”,接收机就可以知道发送端在上述两个传输周期内实际发出的信息是“1”、“0”。可见,尽管传输信号受到了一定的干扰和失真,但并未造成信息的丢失。
上述例子只是从理论上定性地说明了数字通信技术对传输干扰具有较强的抵抗能力,实际的数字通信系统是远较此过程复杂的。上述例子中我们假设传输干扰较小,因此最终没有发生信息丢失。但在实际应用中,干扰常常是很严重的,这样就有可能使得m采样点的信号幅值经过信道传输后小于0,接收机按照最近临原则将其判决为-A,并根据映射规则认为在此周期内发射端发送出的信息为“0”,最终造成了信息丢失。对于这种情况,数字通信系统中采用了纠错编码措施,进一步提高对传输干扰的抵抗能力。由于数字信号都可以用某种进制的数值表示,按照某种纠错算法对数字信号进行数值运算,接收机就可以在一定范围内发现甚至纠正传输差错。
由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。模拟通信基本上没有办法控制传输效率,只有单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。数字通信中的调制技术远远多于模拟调制技术。在传统的调幅、调相、调频技术中,常用的数字调制技术有2ASK、4ASK、8ASK、BPSK、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。更有将幅度与相位联合调制的QAM技术,目前数字微波中广泛使用的256QAM的频带利用率可达8bit/s/Hz,八倍于2ASK或BPSK。此外,还有可减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。
在数字通信系统中,定性而论,传输效率越高,传输可靠性越差;效率越低,可靠性越高,即提高有效性与提高可靠性是一对矛盾,实际通信系统设计的任务就是在这两者之间作综合考虑。例如在卫星通信中,由于信号衰减很严重,传输信号常淹没在噪声中,可靠性问题变得十分尖锐,因此采用了QPSK调制技术。QPSK具有很强的抵抗幅度干扰的能力,但传输效率比较低,仅为2bit/s/Hz。而在数字微波通信中,由于干扰较小,信道环境较好,因此采用了256QAM这种高效调制技术,传输效率高达8bit/s/Hz,但256QAM抗干扰的
无论针对哪种传输媒介,从节目复用器和传送复用器中生成的都是标准的MPEG-2的TS码流。当进行数字广播时,根据传输媒介,选用相应的传输系统,通过纠错编码和调制,将TS码流变换成射频信号。
PDH网是现有的电信网的一种,是一种全数字的通信网。PDH网中传输速率被规定为有限的几种,称为PDH速率级别,只有符合速率级别的比特流才可以进入PDH网中传输。PDH的速率级别有两种体制,分别为北美体制和欧洲体制,我国采用欧洲体制,共有四个级别,速率从低到高依此为2.048Mbps,8.448Mbps,34.368Mbps和139.264Mbps。PDH常被用于台与台之间交换节目,以数字微波为传输媒介。对DVB而言较常用的是8.448Mbps和34.368Mbps两种级别,传输一路MPEG-2节目码流可选用8.448Mbps级别,34.368Mbps级别可用于四路或更多路同时传输。对节目发送者和接收者而言,PDH网是一个基带传输系统,即发送者将规定速率的节目码流送入PDH网,接收者将接收到相同速率和格式的节目码流,因此DVB-PDH传输系统中不需要调制解调器。由于数字微波系统在传输过程中会引入一定的误码,这些误码可能对编码图像或声音产生损伤,因此DVB-PDH传输系统中需要信道编解码器。
SDH是一种新型的数字通信网络,适用于长途骨干传输网,传输高速信息。与PDH一样,SDH也具有规定的速率级别,目前常用的级别为155.520Mbps和622.080Mbps两种;但与PDH不同的是,SDH只有一种国际体制,为世界各国所接受。ATM是一种交换技术,特别适用于活动图像之类的宽带信息通信。SDH和ATM技术近年来发展十分迅速,两者相结合,将在下一世纪成为台与台之间交换远程交换节目的主要途径。SDH以光纤为传输媒介,几乎没有传输干扰,因此DVB-SDH标准中没有特殊的传输系统,只有SDH成帧接口或ATM适应层接口。
尽管DVB可适用于多种传输媒介,但广播仍是DVB最主要的传输媒介,决大多数用户将通过广播信道接收DVB节目,因此DVB标准是以DVB-S、DVB-C、DVB-T和DVB-SC四个适用于广播信道的标准为核心的。此外,由于广播信道中的各种干扰与其它类型的信道中的干扰相比最为严重,适用于广播信道的DVB传输系统技术最为复杂,结构也最为完善,将其做适当的简化和修改,即可适用于其它类型的信道。为能全面介绍DVB传输系统的技术和结构,我们在下文中以广播信道上的DVB传输系统为例进行讨论。
摘抄点供您参考

Ⅸ 什么是信道编码

通过信道编码器和译码器实现的用于提高信道可靠性的理论和方法。信息论的内容之一。信道编码大致分为两类 :

①信道编码定理,从理论上解决理想编码器、译码器的存在性问题,也就是解决信道能传送的最大信息率的可能性和超过这个最大值时的传输问题。

②构造性的编码方法以及这些方法能达到的性能界限。

作用:具有一定的纠错能力和抗干扰能力

阅读全文

与信道编译码及纠错性能研究与分析相关的资料

热点内容
单片机can程序 浏览:271
程序员越来越多吗 浏览:696
bb9机器人是下载什么app 浏览:48
系统资源管理器加密 浏览:954
为什么安卓的app比ios垃圾 浏览:292
安卓怎么放音乐给队友听 浏览:753
程序员吃中国美食视频 浏览:50
手机无损压缩图片 浏览:515
pdf文字重叠 浏览:658
百度钱包app现在叫什么 浏览:412
中考总分的算法 浏览:932
mc如何搭建服务器地址 浏览:109
明日之后苹果如何登录安卓的号 浏览:46
基于单片机的太阳能热水器 浏览:556
901单片机使用教程 浏览:995
曲线命令快捷 浏览:744
加密的应用怎样使用 浏览:558
文件夹怎么说英文 浏览:234
python可以按文件夹名称遍历吗 浏览:369
苏州稳健压缩机滤芯维修 浏览:788