Ⅰ 近似数怎么计算
1、加法减法
在通常情况下,近似数相加减,精确度最低的一个已知数精确到哪一位,和或者差也至多只能精确到这一位。
例如,一个同学前一年体重30.4千克,第二年体重比前一年增加了3.18千克。求第二年体重时要把这两个近似数加起来。因为30.4只精确到十分位,比3.18的精确度(精确到百分位)低,所以加得的和最多也只能精确到十分位。
2、乘法除法
在通常情况下,近似数相乘除,有效数字最少的一个已知数有多少个有效数字,积或者商也至多只能有同样多个有效数字。
例如,近似数9.04和4.3相乘,从竖式中看到,积里只有前两位数字是确定的,就是说只能有两位有效数字。这和第二个因数的有效数字的个数相同。
3、混合运算
近似数的混合运算,可按运算顺序和近似数的计算法则分步计算,但中间运算的结果要比最后结果多取一位数字。
例6、 计算3.054×2.5-57.85÷9.21。
3.054×2.5-57.85÷9.21≈3.05×2.5-57.85÷9.21≈7.63-6.28≈1.4根据已知数据,最后运算的结果要取两位数字,因此,中间运算的结果要取三位数字。
(1)科学计算法跟近似数是怎么弄的扩展阅读
一个近似数的精确度通常有以下两种表述方式:
1、用四舍五入法表述。一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。
2、另外还有进一和去尾两种方法。用有效数字的个数表述。有四舍五入得到的近似数,从左边第一个不是零的数字起,到末位数字为止的数所有数字,都叫做这个数的有效数字。
起初人们只觉得某部分的数是数,后来随着需要,逐步将数的概念扩大;例如毕达哥拉斯认为,数必须能用整数和整数的比表达的,后来发现无理数无法这样表达,引起第一次数学危机,但人们渐渐接受无理数的存在,令数的概念得到扩展。
Ⅱ 计算方法求近似值的方法
1.四舍五入法
这种最常用的求近似数的方法,主要是看它省略的尾数是4或比4小时,就把尾数舍去;如果省略的尾数最高位上的数是5或比5大时,把尾数省略去掉后,要向前一位进一。如3096401≈310万,1÷3=0.333……≈0.3。从上面两例可以看出“四舍”时近似数比准确值小,“五入”时近似数比准确值大。
2.进一法
在实际生活中,有时把一个数的尾数省略后,不管尾数最高位上的数是几,都要向前一位进一。比如一辆车能容纳4个人,现在有15个人,则需要的车辆数目为15除以4等于3.75约定于4
3.去尾法
在实际生活中,有时把一个数的尾数省略后,不管尾数的最高位上的数是几,都不要向它的前一位进一。例如一个牛皮盒子需要3平方分米的牛皮才能完成,而现在只有10平方分米的牛皮,则只能完成10除以3等于3,3约等于3个
这三种求近似数的方法,各自适用于不同的情况,一般来说,如果没有特殊要求或其他条件的限制时,都应采取四舍五入法。
最后,有些时候需要用科学计数法表达。
Ⅲ 科学记数法与近似数的定义
科学计数法:表示很大的数字时使用,例如表示两地之间很长的一段距离时,两个天体之间等等。或是表示一个很微小的事物,例如表示一个细菌的大小,长短。
近似数:所有测量的值都是近似数,表示高度,有时就用近似值,而不用精确值。表示重量也是
Ⅳ 数学科学计数法与近似数怎么做,列如,902000000000000000000这一怎么求近似数
科学计数法:9.02 x 10的20次方
近似数:9 x 10的20次方
比如89100精确到百位:8.90x10的4次方
Ⅳ 求近似数的方法
1、四舍五入法,若取小数近似数时,尾数的最高位数字是4或者小于4,则去掉尾数,若尾数的最高位数是5或者大于5,则舍去尾数,并且在它的前一位进1;
2、进一法,是指去掉多余部分的数字后,在保留部分的最后一个数字上加1,近似值为过剩近似值,即比准确值大;
3、去尾法,是指去掉数字的小数部分,取其整数部分的常用的数学取值方法,其取的值为近似值,即比准确值小,去尾法适用于生活中,也叫去尾原则。
有效数字
与实际数字比较接近,但不完全符合的数称之为近似数 。
对近似数,人们常需知道他的精确度。一个近似数的精确度通常有以下两种表述方式:
1、用四舍五入法表述。一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。
2、另外还有进一和去尾两种方法。用有效数字的个数表述。有四舍五入得到的近似数,从左边第一个不是零的数字起,到末位数字为止的数所有数字,都叫做这个数的有效数字。
Ⅵ 科学记数法与近似数的定义
1科学记数法:把一个整数或有限小数记成a*10^n的形式,其中a的绝对值小于10大于等于1,n为正整数(后来扩大到整数),这个记数方法叫做科学记数法。
2一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字。