导航:首页 > 源码编译 > 算法求平均数

算法求平均数

发布时间:2022-10-05 06:51:58

A. 计算平均数的方法有哪些

1、平均数=(a1+a2+…+an)/n

2、算术平均数

算术平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。公式为:平均数=(a1+a2+…+an)/n

3、加权平均数

若n个数x1,x2,……xn的权分别为w1,w2,……wn,则这n个数的加权平均数是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)

平均数非常明显的优点之一是,它能够利用所有数据的特征,而且比较好算。另外,在数学上,平均数是使误差平方和达到最小的统计量,也就是说利用平均数代表数据,可以使二次损失最小。

因此,平均数在数学中是一个常用的统计量。但是平均数也有不足之处,正是因为它利用了所有数据的信息,平均数容易受极端数据的影响。

B. 算术平均值怎么算

把 n 个数相加,然后把它们的和除以 n 所得的数就是算术平均值。
例如:3、5、7这三个数,那么它们的算术平均值=(3+5+7)÷3=5

C. 求平均数的简便方法

抛砖引玉——求平均数的简便方法

冀教版第八单元统计第一节课教学平均数。根据求平均数的一般方法得出公式为:总数量÷总份数=平均数。其中求总数量需要把统计的各部分数据加起来,然后再用所的得的和除以总份数就等于平均数。

举例如下:2003年某市举办小学生篮球友谊赛,运动员的身高如下:153 、 138 、153 、 163、 165 、 158 、 166 、 168 、 158 。 (单位:厘米)运动员的平均身高是多少?

基本解法:(153 + 138 +153+ 163+ 165+ 158+ 166 + 168+ 158)÷9

=1422÷9

=158(厘米)

学生试算时,我巡视发现对于较复杂的数据之和的计算过程比较繁琐,很容易出错。针对这种情况,我提倡学生用简便解法,学生有利用加法交换律凑整十整百的,还有的学生把众多数据中相同的数提出来用乘法计算的,但毕竟不是所有的数据都具备简算的特征,所以学生感觉还是计算繁琐枯燥。那么有没有更简便的计算方法?对于这样比较大的数据怎样才能从根本上解决问题呢?首先让学生观察数据的特点:每个数都是大于大于100的数,都包含100,

能不能求出后两位数的平均数,求出的这个平均数与原数的大小有什么关系?这样抛砖引玉,引导学生简便计算如下:

(53 + 38 +53+ 63+ 65+ 58+ 66 + 68+ 58)÷9+100

=522÷9+100

=58+100

=158(厘米)

由此得出对于较复杂的数据求平均数的简便方法为:求出后几位数的平均数再加上各原始数据原有的整数部分。

为了加强对这种计算方法的巩固,课堂上继续让学生计算本次期中考试的几位学生的平均成绩,这几位学生的期中考试的成绩分别是93 95 94 99 99 96,学生出现如下计算过程:

(3+5+9+9+6)÷6+90

=36÷6+90

=6+90

=96

对于已经变化了特征的数字,学生能够举一反三,顺利解答。同时这种求平均数简便方法的探索,为学生接触到负数和以后进一步的学习做了铺垫。

数学冲浪

6名同学参加踢毽子比赛,王小波在计算平均成绩时,忘掉了自己和自己踢的84下,计算结果为平均每人踢了72下。你能算出这6名同学平均每人踢了多少下吗?

72下是5个人平均每人踢的,那5个同学一共踢72×5=360下,6名同学踢(360+84)下,则这6名同学平均每人踢(72×5+84)÷6=74下。

简便算法:84和72都含有整十数70,按前面的简便方法可以先求出70以外的数的平均数,在加上70就是这6名同学的平均数:(2×5+14)÷6+70=(10+14)÷6+70=24÷6+70=4+70=74

D. 平均值是怎么算的

计算平均值,一般常用的有两种方法:一种是简单平均法,一种是加权平均法。
例如,某企业生产a产品10台,单价100元;生产b产品5台,单价50元;生产c产品3台,单价30元,计算平均价格?
简单平均法:平均价格=∑各类产品单价
/
产品种类
平均价格=(100+50+30)/
3
=
60(元)
加权平均法:平均价格=∑(产品单价×产品数量)/
∑(产品数量)
平均价格=(100×10+50×5+30×3)/(10+5+3)=
74.44(元)
可以看出,简单平均与加权平均计算出来的平均值差距较大,而后者更贴近事实,属于精确计算。

E. 平均值怎么算

计算平均值,一般常用的有两种方法:一种是简单平均法,一种是加权平均法。

例如,某企业生产A产品10台,单价100元;生产B产品5台,单价50元;生产C产品3台,单价30元,计算平均价格?

简单平均法:平均价格=∑各类产品单价 / 产品种类

平均价格=(100+50+30)/ 3 = 60(元)

加权平均法:平均价格=∑(产品单价×产品数量)/ ∑(产品数量)

平均价格=(100×10+50×5+30×3)/(10+5+3)= 74.44(元)

可以看出,简单平均与加权平均计算出来的平均值差距较大,而后者更贴近事实,属于精确计算。

(5)算法求平均数扩展阅读:

平均值有算术平均值,几何平均值,平方平均值(均方根平均值,rms),调和平均值,加权平均值等。其中以算术平均值最为常见。

算术平均数,又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。它主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。

算术平均数是加权平均数的一种特殊形式(特殊在各项的权重相等)。在实际问题中,当各项权重不相等时,计算平均数时就要采用加权平均数;当各项权相等时,计算平均数就要采用算术平均数。

1. 加权算术平均数同时受到两个因素的影响,一个是各组数值的大小,另一个是各组分布频数的多少。在数值不变的情况下,一组的频数越多,该组的数值对平均数的作用就大,反之,越小。

频数在加权算术平均数中起着权衡轻重的作用,这也是加权算术平均数“加权”的含义。

2. 算术平均数易受极端值的影响。例如有下列资料:5、7、5、4、6、7、8、5、4、7、8、6、20,全部资料的平均值是7.1,实际上大部分数据(有10个)不超过7,如果去掉20,则剩下的12个数的平均数为6。

由此可见,极端值的出现,会使平均数的真实性受到干扰。

几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。

根据所拿握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。

F. 平均值怎么算简单算法

(a1+a2+……an)/n为a1,a2,……,an的算术平均值.
简单算术平均数.有这么一组数字10、20、30、40、50那么它们的算术平均值是(10+20+30+40+50)/5=30
平均值有算术平均值,几何平均值,平方平均值(均方根平均值,rms),调和平均值,加权平均值等,其中以算术平均值最为常见。
算术平均数( arithmetic mean),又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。它主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。 算术平均数是加权平均数的一种特殊形式(特殊在各项的权重相等)。在实际问题中,当各项权重不相等时,计算平均数时就要采用加权平均数;当各项权相等时,计算平均数就要采用算术平均数。

G. 平均数怎么算

平均数算法如下:

工具/原料:演示电脑:LAPTOP-PCSAQDF9 Windows 10家庭中文版64位(10.0,版本17763)、演示软件:Word 2010。

1、首先我们直接将各数据相加,得到总数,然后将得到的总数除以数据的个数,即可得到我们需要的平均数。

H. 用三种方法求平均数

1、平均数=(a1+a2+…+an)/n

2、算术平均数

算术平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。公式为:平均数=(a1+a2+…+an)/n

3、加权平均数

若n个数x1,x2,……xn的权分别为w1,w2,……wn,则这n个数的加权平均数是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)

平均数非常明显的优点之一是,它能够利用所有数据的特征,而且比较好算。另外,在数学上,平均数是使误差平方和达到最小的统计量,也就是说利用平均数代表数据,可以使二次损失最小。

因此,平均数在数学中是一个常用的统计量。但是平均数也有不足之处,正是因为它利用了所有数据的信息,平均数容易受极端数据的影响。

(8)算法求平均数扩展阅读

一、很多题目中都不止存在一组平均数关系,而是有多组平均数关系,各组之间的数量切不可混淆。例如涉及男生女生平均分数的题目,全班总分数、全班人数、全班平均分是一组数量。

而男生总分数、男生人数、男生平均分是另外一组数量,女生总分数、女生人数、女生平均分则是第三组数量,这三组数量之间要注意不能混淆来计算。

二、不能简单地用两个平均数的平均来求第三个平均数。例如不能用“男生平均分”加上“女生平均分”除以2来求全班平均分,而是要严格按照平均数的定义,用“总数量÷总份数”来求平均数。这是一个常见错误,要特别注意。

三、涉及多组平均数的题目,往往各组的数量之间是有联系的,利用各组之间的数量关系是解题的往往是解题的关键。例如在上面提到的全班、男生、女生这三组平均分关系中,还存在“全班人数=男生人数+女生人数”、“全班总分=男生总分+女生总分”这些数量关系,要善于利用。

阅读全文

与算法求平均数相关的资料

热点内容
解压小熊手机壳 浏览:342
成都市区建成面积算法 浏览:658
智能家居单片机 浏览:95
买男装用什么app好 浏览:853
文件夹合并了怎么拆开 浏览:257
波段副图源码无未来函数 浏览:86
livecn服务器地址 浏览:257
程序员这个工作真的很吃香吗 浏览:844
程序员和数学分析师待遇 浏览:678
压缩气弹簧怎么拆 浏览:321
华为公有云服务器添加虚拟ip 浏览:209
程序员和运营哪个累 浏览:24
抖音安卓信息提示音怎么设置 浏览:454
光速虚拟机的共享文件夹 浏览:248
程序员培训机构发的朋友圈真实性 浏览:744
天干地支简单算法 浏览:299
下载个压缩文件 浏览:300
普通人电脑关机vs程序员关机 浏览:630
米酷建站源码 浏览:115
氢气app怎么搜搭配 浏览:619