Ⅰ 《社交网站的数据挖掘与分析》epub下载在线阅读全文,求百度网盘云资源
《社交网站的数据挖掘与分析》(MatthewA.Russell)电子书网盘下载免费在线阅读
链接: https://pan..com/s/1egmZERfZ48P3zXX5PNV3bg
书名:社交网站的数据挖掘与分析
豆瓣评分:6.8
作者:MatthewA.Russell
出版社:机械工业出版社
原作名:Mining the Social Web : Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites
译者:师蓉
出版年:2012-2
页数:301
内容简介:
Facebook、Twitter和LinkedIn产生了大量宝贵的社交数据,但是你怎样才能找出谁通过社交媒介正在进行联系?他们在讨论些什么?或者他们在哪儿?这本简洁而且具有可操作性的书将揭示如何回答这些问题甚至更多的问题。你将学到如何组合社交网络数据、分析技术,如何通过可视化帮助你找到你一直在社交世界中寻找的内容,以及你闻所未闻的有用信息。
每个独立的章节介绍了在社交网络的不同领域挖掘数据的技术,这些领域包括博客和电子邮件。你所需要具备的就是一定的编程经验和学习基本的python工具的意愿。
•获得对社交网络世界的直观认识
•使用GitHub上灵活的脚本来获取从诸如Twitter、Facebook和LinkedIn之类的社交网络API中的数据
•学习如何应用便捷的Python工具来交叉分析你所收集的数据
•通过XHTML朋友圈探讨基于微格式的社交联系
•应用诸如TF-IDF、余弦相似性、搭配分析、文档摘要、派系检测之类的先进挖掘技术
•通过基于HTML5和javaScript工具包的网络技术建立交互式可视化
作者简介:
马修·罗塞尔(Matthew A.Russell),Digital Reasoning Systems公司的技术副总裁和Zaffra公司的负责人,是热爱数据挖掘、开源和Web应用技术的计算机科学家。他也是《Dojo: The Dofinitive Guide》(O'Reilly出版社)的作者。在LinkedIn上联系他或在Twitter上关注@ptwobrussell,可随时关注他的最新动态。
Ⅱ 浅谈对数据分析、数据挖掘以及大数据的认识
【导读】可以说,我们每天都被大量的数据充斥着,生活以及工作时时刻刻离不开数据也离不了数据,不过在大数据领域里,数据分析、数据挖掘以及大数据他们是不一样的,很多人在刚入门的时候,这几个概念经常会分不清,问十个人这几个词的意思,你可能会得到十五种不同的答案。今天小编就通过一种比较牵线的例子来和大家聊聊对数据分析、数据挖掘以及大数据的认识。
首先来介绍一下数据与信息之间的区别。
数据是什么,信息又是什么,其实最本质的区别就是,数据是存在的,有迹可循的,不需要进行处理的,而信息是需要进行处理的。
例如你想要为家里买一个新衣柜,那么首先就是要去测量室内各处的长、宽、高,对于这些数据,只要我们测量就可以得到准确的值,因为这些数据是客观存在的,这些客观存在的值就是数据。
而信息却不同,你来到家具商场购买衣柜,你会说,我们放3米的衣柜放在房间刚刚好,2米的有些短,看着不大气,4米的又太大了,不划算。那这种就属于信息,这些时候经过大脑进行了思考,进行了主观判断的,而你得出这些信息的依据就是那些客观存在的数据。
其次,数据分析是对客观存在的或者说已知的数据,通过各个维度进行分析,得出一个结论。
例如我们发现公司的APP用户活跃度下降:
从区域上看,某区域的活跃度下降的百分比
从性别方面看,男生的活跃度下降的百分比
从年龄来看,20岁~30岁的活跃度下降的百分比
等等,这样不同的业务类型去看过去一段时间发展的趋势来做结论判断。
数据挖掘不仅仅用到统计学的知识,还要用到机器学习的知识,这里会涉及到模型的概念。数据挖掘具有更深的层次,来发现未知的规律和价值。而且更注重洞察数据本身的关系,从而获得一些非显型的结论,这是我们从数据分析中无法得到了,例如关联分析可以知道啤酒与尿布的关系、决策树可以知道你购买的概率、聚类分析可以知道你和谁类似,等等,重在从各个维度去发现数据之间的内在联系
因此两者的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据发挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。
例如一个人想找一个女朋友,他可以很快很容易的了解到其外在相关因素情况,例如身高、体重、收入、学历等情况,但是他没有办法从这些数据中知道这个女孩是否适合自己、她的性格与自己是否能够相处融洽……这时我他就需要从一些日常行为的数据进行推断,一种是主观的推断,他觉得、他估计、他认为,能不能在一起。
另一种是客观+主观的推断,比如整合社交平台数据(可以知道朋友圈、微博的日常内容、兴趣爱好等等),和自己的行为进行数据挖掘,来看看数据内在的匹配度有多少,这时候,他就可以判断出,他们在一起的概率有99%,从而建立信心,开始行动.....
当然统计学上讲,100%的概率都未必发生,0%的概率都未必不发生,这只是小概率事件,不要让这个成为你脱单的绊脚石。
最后,思考的方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。
我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的假设
分析框架(假设)+客观问题(数据分析)=结论(主观判断)
而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确
什么变量都要,先从模型的意义上选变量(大而全,多而精),之后根据变量的相关系程度、替代关系、重要性等几个方面去筛选,最后全扔到模型里面,最后从模型的参数和解读的意义来判断这种方式合不合理。
分析更多依赖于业务知识,数据挖掘更多侧重于技术的实现,对于业务的要求稍微有所降低,数据挖掘往往需要更大数据量,而数据量越大,对于技术的要求也就越高需要比较强的编程能力,数学能力和机器学习的能力。如果从结果上来看,数据分析更多侧重的是结果的呈现,需要结合业务知识来进行解读。而数据挖掘的结果是一个模型,通过这个模型来分析整个数据的规律,一次来实现对于未来的预测,比如判断用户的特点,用户适合什么样的营销活动。显然,数据挖掘比数据分析要更深一个层次。数据分析是将数据转化为信息的工具,而数据挖掘是将信息转化为认知的工具。
以上就是小编今天给大家整理发送的关于“浅谈对数据分析、数据挖掘以及大数据的认识”的相关内容,希望对大家有所帮助。想了解更多关于数据分析及人工智能就业岗位分析,关注小编持续更新。
Ⅲ 给师弟师妹们学习数据挖掘的一些建议
给师弟师妹们学习数据挖掘的一些建议
看着刚进实验室的师弟师妹们的迷茫,虽然也与他们进行过一些零散的交谈,但是都不够系统。因此,根据自己的经历给出学习数据挖掘的一些建议,大家可以根据自身的情况,具体问题具体分析,作为参考。希望在上一届的基础上,走的更深,走的更远。
一. 读研与数据挖掘基础
首先介绍一下大家都比较关心的几个问题,包括我们组的研究方向是什么,论文相关问题,大数据与工作相关问题,上海户口问题几个方面。
1. 我们组的研究方向是什么
我们组大的研究方向是数据挖掘,论文的研究方向是推荐算法。要注意大的研究方向,论文的研究方向与工作方向的区别和联系。
2. 论文相关问题
读研究生免不了会思考一个问题,读研的意义是什么?我自己认为读研的最大意义是训练自己系统化的严谨的分析思维能力。在导师给定论文研究方向后,如何确立更细的研究方向,如何检索资料,如何阅读英文论文,如何提出自己的创新点,如何做实验,如何写论文,如何修改论文,如何投稿,如何退修,如果是国际会议,还要去做英文口头报告,与同行交流等,这些问题都是需要自己去思考的。
3. 大数据与工作相关问题
数据挖掘属于大数据专业吗?当然属于。现在大数据找工作相对还是比较理想的。关键是要学习哪些课程呢?以前给大家推荐了很多的书籍,但是效果却恰恰相反,因为实在太多了根本看不完,更不知阅读书籍的顺序,浅尝辄止,最后一本书也没有看完,研究生就结束了。
(1)最低保障书籍
无论将来做什么,熟练掌握一门编程语言,一个数据库,数据结构,算法都是必备的。
《高性能MySQL》
《数据结构与算法分析:Java语言描述》
《算法》:http://book.douban.com/subject/19952400/
(2)Python与机器学习
《集体智慧编程》
《社交网站的数据挖掘与分析》
《数据挖掘:概念与技术》
Python官方文档:https://www.python.org/
Scikit-Learn官方文档:http://scikit-learn.org/stable/
(3)Java相关书籍
《Java开发实战经典》
《Java Web开发实战经典》
《Java虚拟机规范》
Java SE:http://docs.oracle.com/javase/8/docs/api/
Java EE:http://docs.oracle.com/javaee/6/api/
(4)Hadoop与Spark书籍
《大数据日知录:架构与算法》
《Hadoop权威指南》
《大数据Spark企业级实战》
《Scala编程》
Hadoop官方网站:http://spark.apache.org/
Spark官方网站:http://spark.apache.org/
Scala官方网站:http://www.scala-lang.org/
说明:认准目标,耐住性子,一步一步往前走。要把上面推荐的书籍硬着头皮读完,数据挖掘基本也就算是入门了。
4. 上海户口问题
上海户口属于积分制,如果想要在校期间就拿到,那么唯一的方式就是参数每年的研究生数据建模比赛,并且获奖。获奖比例还是很高的。其实,好好学习Python,买本数学建模的书籍看完,看几篇近些年来的获奖论文,比赛时硬着头皮钻研一道题目并且写好论文,基本上都可以获奖。
二. 数据挖掘进阶
数据挖掘涉及多个方向,但是通常从数学统计,数据库和数据仓库,机器学习三个方向来进行研究。当我想学习一个方向的时候,最希望做的事情就是让别人给我列出一个书单。因为我也会给你们列出一个书单,让你们慢慢研究吧。
1. 数学统计
(1)理论数学:复变函数,实变函数,泛函分析,拓扑学,积分变换,微分流形,常微分方程,偏微分方程等。
(2)应用数学:离散数学(集合,逻辑,组合,代数,图论,数论),具体数学,张量分析,数值计算,矩阵论,逼近论,运筹学,凸优化,小波变换,时间序列分析等。
(3)概率:概率论,测度论,随机过程等。
(4)统计:统计学,多元统计,贝叶斯统计,统计模拟,非参数统计,参数统计等。
2. 数据库和数据仓库
《数据库系统概念》
《数据库系统实现》
《数据仓库》
《分布式系统:概念与设计》
3. 机器学习
通信原理;数据挖掘;机器学习;统计学习;自然语言处理;信息检索;模式识别;人工智能;图形图像;机器视觉;语音识别;机器人学等。(这方面的经典书籍都可以看看,后面慢慢补充)
4. 其它书籍
(1)Linux
(2)网络原理,编译原理,组成原理,
(3)JVM
(4)UML
(5)软件工程
(6)设计模式
(7)云计算与Docker
(8)并行计算
(9)需求分析
三. 学习与方法
作为一名软件工程师,需要熟练掌握的工具,如下所示:
(1)博客
除了学习之外,更要思考和总结,把还没有忘却的记忆缓存序列化成为文字,记录在博客中。
(2)语言
大数据常用的语言包括Java,Scala,Python。如果一定要选择精通一门语言,自己选择Scala,同时深度学习JVM。(3)开发工具
自己选择IntelliJ IDEA用于Java和Scala的开发,Eclipse用于Python的开发。
(4)GitHub
每天都要坚持编程,主动参与开源项目。
(5)Linux
工作常用的是Ubuntu 12.04 LTS。
由于时间原因,上面总结的还比较粗糙,算是第一个版本吧,后面还会继续深度总结和完善。
Ⅳ 有哪些互联网运营方面的书值得推荐
因为不了解,所以去专研。之前就是为了转行到运营,所以查了不少互联网运营相关的资料,也收藏了一些相关书籍,在这里分享给大家。
愿我们活成自己喜欢的样子。
更多优质内容,请关注【树子漂流记】
对了,这6本书籍资源,有需要的,留言评论告诉树子。
这么好看的你,如果喜欢树子的分享,给树子点个赞吧。
Ⅳ 有哪些互联网运营方面的书值得推荐
人丑就要多读书
有句话相信你肯定听过——“人丑就要多读书”。你长得丑还是温柔,我是不知道了,我只知道“运营就要多读书”。
为什么运营就要多读书?
毕竟想系统提高运营能力,建议还是站在巨人的肩膀上,也就是读行业大牛用从业经验汇集而成的书最靠谱。
而运营大概分为这几类:
新媒体运营、内容运营、活动运营、社群运营、用户运营、产品运营、商务运营、等等。
无论是哪一类的运营,都需要你了解用户的需求,打造信任,来满足用户,并且得到回报。
讲点最实际的,而你平常揪心的工作问题和苦恼,都能通过读相应的书,或者是课程,一点一点去攻破突围,在书里找到新思路。
同时建议大家参加一些学习团体,报一两个运营课程。一个人闭门造车不一定能成,一群人手拉手前进,一定能走更远。
一、增长黑客
对小白很还是比较友好的,能指导快速建立运营框架。
这本书是作者写给没有运营经验的小白看的基础类科普运营书,2015年写的,内容是作者总结多年的工作经验总结而来里面的案例放在现在来说已经有些过时了,但是对运营体系的框架勾画的很清楚,概念解释详细,运营的工作内容罗列全面,文字通俗易懂,通读本书作者对运营的三个方面进行了讲解,分别是用户运营、活动运营、内容运营,其中对用户以及内容运营做了比较详细的介绍,最后部分做了总结。
Ⅵ 社交网络数据挖掘
理解基于计算机的社会网络的一种可能方法是Garton等人(1997年)提出的“社会网络分析”(SNA)工具和方法论,来创建一幅描述知识网络的可视图象。
社会网络分析人员所探究的不仅是个人的特定属性,而是考虑社会行为者之间的关联和交换。分析人员研究那些能够创造并维持工作和社会关系的交换行为。所交换的资源多种多样,它们可以是有形的,如商品和服务;也可以是无形的,如影响力或社会支援。在“以计算机为媒介的通讯”(CMC)这个背景下,交换资源是那些通过文本、图象、动画、音频或视频等媒体来传达给他人的东西。
例如:分享信息(新闻或数据);讨论工作;给予情感上的支持或提供友谊。社会网络分析方法论提供了一种良好的方式,来关注社会实体之间的关联,以及这些关联的模式和含义。在过去的二十年中,社会网络分析领域得到了快速发展,主要是由于社会学和通讯科学领域中的兴趣激增。在一定程度上,这是由于便宜的计算能力所导致的,它使得原来采用手工分析方式而无法完成的超大社会网络的处理成为可能。
Ⅶ 如何分析网站源码
分析网站源码可以从以下同个方面
第一,网站采用的技术,是php还是asp,通常php好于asp
第二,网站布局结构是用的div/css还是tabel通常div布局更有利网站收录
第三,网站的源码是否支持二次开发,书写是否规范.只要看代码有没有加密,有没有注释,易不易看懂
第四,网站源码是否原创,是否有版权问题.如果你是要用它建站,这个还是要注意下了.免得吃官司
第五,源码的安全性,可以用360网站网站在线安全检测来检查一下.
综上所述就是分析网站的几个点了,打了这么多字希望采纳
Ⅷ python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)
Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。
Python数据分析与挖掘技术概述
所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。
预先善其事必先利其器
我们首先聊聊数据分析的模块有哪些:
下面就说说这些模块的基础使用。
numpy模块安装与使用
安装:
下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我这里下载的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy
numpy简单使用
生成随机数
主要使用numpy下的random方法。
pandas
使用 pip install pandas 即可
直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:
常用方法如下:
下面看看pandas对数据的统计,下面就说说每一行的信息
转置功能:把行数转换为列数,把列数转换为行数,如下所示:
通过pandas导入数据
pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。
CSV文件
csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列
excel表格
依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数
读取SQL
依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。
读取HTML
依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取
显示的是时候是通过python的列表展示,同时添加了行与列的标识
读取txt文件
输出显示的时候同时添加了行与列的标识
scipy
安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl
matplotlib 数据可视化分析
我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。
下面请看代码:
下面说说修改图的样式
关于图形类型,有下面几种:
关于颜色,有下面几种:
关于形状,有下面几种:
我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:
我们还可以画虚线图,代码如下所示:
还可以给图添加上标题,x,y轴的标签,代码如下所示
直方图
利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。
Y轴为出现的次数,X轴为这个数的值(或者是范围)
还可以指定直方图类型通过histtype参数:
图形区别语言无法描述很详细,大家可以自信尝试。
举个例子:
子图功能
什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:
我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。
先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。
我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。
下面看看代码:
Ⅸ 数据挖掘方向,Python中还需要学习哪些内容
就题论题,还包括:
1. Python 数据库连接库,例如MySQL 连接库的应用,这决定你的数据从哪里来。这里面涉及到sql语法和数据库基本知识,是你在学习的时候必须一起学会的。
2. Python 做基本数据计算和预处理的库,包括numpy ,scipy,pandas 这三个用得最多。
3. 数据分析和挖掘库,主要是sklearn,Statsmodels。前者是最广泛的机器学习库,后者是侧重于统计分析的库。(要知道统计分析大多时候和数据挖掘都错不能分开使用)
4. 图形展示库。matpotlib,这是用的最多的了。
说完题主本身 要求,楼上几位说的对,你还需要一些关于数据挖掘算法的基本知识和认知,否则即使你调用相关库得到结果,很可能你都不知道怎么解读,如何优化,甚至在什么场景下还如何选择算法等。因此基本知识你得了解。主要包括:
1.统计学相关,看看深入浅出数据分析和漫画统计学吧,虽然是入门的书籍,但很容易懂。
2.数据挖掘相关,看看数据挖掘导论吧,这是讲算法本身得书。
剩下的就是去实践了。有项目就多参与下项目,看看真正的数据挖掘项目是怎么开展的,流程怎样等。没有项目可以去参加一些数据挖掘或机器学习方面的大赛,也是增加经验得好方法。