导航:首页 > 源码编译 > 秦九韶算法v1v2什么意思

秦九韶算法v1v2什么意思

发布时间:2022-10-07 20:45:04

⑴ 求解决,秦九韶算法

V1=x=3
V2=V1·x+2=9+2=11
V3=V2·x+3=33+3=36
V4=V3·x+1=108+1=109

⑵ 什么是秦九韶算法

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的.
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法。
[编辑本段]意义
该算法看似简单,其最大的意义在于将求n次多项式的值转化为求n个一次多项式的值。在人工计算时,利用秦九韶算法和其中的系数表可以大幅简化运算;对于计算机程序算法而言,加法比乘法的计算效率要高很多,因此该算法仍有极大的意义,用于减少CPU运算时间。

⑶ 秦九韶算法是什么

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。
一般地,一元n次多项式的求值需要经过[n(n+1)]/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。特别是在现代,在使用计算机解决数学问题时,对于计算机程序算法而言秦九韶算法可以以更快的速度得到结果,减少了CPU运算时间。
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法。

⑷ 数学问题 求强人讲解下秦九韶算法是怎么回事

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法(Horner algorithm或Horner scheme),是以英国数学家威廉·乔治·霍纳命名的.
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)
结论:对于一个n次多项式,至多做n次乘法和n次加法。
意义:
该算法看似简单,其最大的意义在于将求n次多项式的值转化为求n个一次多项式的值。在人工计算时,利用秦九韶算法和其中的系数表可以大幅简化运算;对于计算机程序算法而言,加法比乘法的计算效率要高很多,因此该算法仍有极大的意义,用于减少CPU运算时间。

⑸ 秦九韶算法是甚么

秦九韶算法
是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法(Horner
algorithm或Horner
scheme),是以英国数学家威廉·乔治·霍纳命名的.
把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=......
=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
(注:中括号里的数表示下标)

结论:对于一个n次多项式,至多做n次乘法和n次加法。

⑹ 秦九韶算法怎么算举几个例子

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。

秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。

⑺ 秦九韶算法是什么

秦九韶算法

1.教学任务分析

(1)在学习中国古代数学中的算法案例的同(2)时,进一步体会算法的特点。(3)体会中国古代数学对世界数学发展的贡献。

2. 重点与难点重点:理解秦九韶算法的思想。难点:用循环结构表示算法步骤。

3.教学情境设计 (1) 设计求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值的算法,并写出程序。

学生提出一般的解决方案,如:

x=5 f=2 * x^5 – 5 * x^4 – 4 * x^3 + 3 * x^2 – 6 * x + 7

PRINT“f=”;fEND

教师点评:上述算法一共做了解15次乘法运算,5次加法运算,优点是简单,易懂。缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高。

(2)有没有更高效的算法?

师:计算x的幂时,可以利用前面的计算结果,以减少计算量,即先计算x2,然后依次计算x2.x,(x2.x).x, ((x2.x).x).x的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?

第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法更快地得到结果。

(3)能否探索更好的算法,解决任意多项式的求值问题?

教师引导学生把多项式变形为:f(x)= 2x5-5x4-4x3+3x2-6x+7

=((((2x-5)x-4)x+3)x-6)x+7

并提问:从内到外,如果把每一个括号都看成一个常数,那么变形后的式子中有哪些“一次式”?x的系数依次是什么?

(4)若将x的值代入变形后的式子中,那么求值的计算过程是怎样的?

师:计算的过程可以列表表示为:

多项式x系数

2

-5

-4

3

-6

7

运算

10

25

105

540

2670

+

变形后x的"系数"

2

5

21

108

534

2677

*5

最后的系数2677即为所求的值,让学生描述上述计算过程

师:指出这种算法就是“秦九韶算法”,同时介绍秦九韶的生平。

(5)用秦九韶算法求多项式的值,与多项式的组成有直接关系吗?用秦九韶算法计算上述多项式的值,需要多少次乘法运算和多少次加法运算?教师引导学生发现在求值的过程中,计算只与多项式的系数有关,让学生统计所进行的乘法和加法运算的次数。(6) 秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+….+a1x+a0的求值问题吗?

师:怎样用秦九韶算法求一般多项式f(x)= anxn+an-1xn-1+….+a1x+a0当x=x0时的值?

教师引导学生思考,把n次多项式的求值问题转化成求n个一次多项式的值的问题,即求v1=anx+an-1

v2=v1x+an-2 v3=v2x+an-3 …….. vn=vn-1x+a0

的值的过程,共做了多少次乘法运算,多少次加法运算?

(7)怎样用程序框图表示秦九韶算法

观察秦九韶算法的数学模型,计算vk时要用到vk-1的值,若令v0=an,我们可以得到下面的递推公式:

v0=an vk=vk-1+an-k(k=1,2,…n)

这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现。

(8)小结:通过对秦九韶算法的学习,你对算法本身有哪些进一步的认识?

教师引导学生思考、讨论、概括,小结时要关注如下几点:(1)算法具有通用的特点,可以解决一类问题;(2)解决同一类问题,可以有不同的算法,但计算的效率是不同的,应该选择高效的算法;(3)算法的种类虽多,但三种逻辑结构可以有效地表达各种算法;等等。

(9)课后作业:习题1.3A组第2题。

⑻ 秦九韶算法,有没有通俗点的解释,看不懂T_T v1 v2又是什么东西

⑼ 秦九韶算法的公式是什么

把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+L+a[1]x+a[0]改写成如下形式:
f(x)=a[n]x^n+a[n-1]x^(n-1))+L+a[1]x+a[0]
[n-1]x^
求多项式的值时,首先计算最内层括号内的值即

v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即

v[2]=v[1]x+a[n-2]

v[3]=v[2]x+a[n-3]

......

v[n]=v[n-1]x+a[0]

⑽ 秦九韶算法里的v是什么

秦九韶算法定义v0为x最高项系数,依此类推。

阅读全文

与秦九韶算法v1v2什么意思相关的资料

热点内容
单片机有4个8位的io口 浏览:895
win10rar解压缩软件 浏览:164
plc教程pdf 浏览:665
pythonshell清屏命令 浏览:278
检测到加密狗注册服务器失败 浏览:203
解压后手机如何安装 浏览:518
极客学院app为什么下架 浏览:13
图片批量压缩绿色版 浏览:651
东北程序员帅哥 浏览:707
加密封条风噪小 浏览:974
安阳少儿编程市场 浏览:499
云服务器建设原理 浏览:259
javajunit4for 浏览:847
华为服务器如何进阵列卡配置 浏览:435
apache服务器ip地址访问 浏览:720
如何买到安卓手机预装软件 浏览:537
冤罪百度云不要压缩 浏览:89
苏州云存储服务器 浏览:178
解压收纳原声 浏览:387
java注册验证 浏览:377