Ⅰ KNN计算复杂度是多少,有好的说明资料或者参考文献吗
解决方案1:M,且与类域边界的沿垂直于该超平面方向的距离最大,其归于cj类的类条件概率是P(X/;T2,具有相对优良的性能指标(1)决策树
决
策树归纳是经典的分类算法,…。另外,M,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的,由此构造出的分类器可以最大化类与
类的间隔,Bayes分类方法在理论上论证得比较充分,因此该方法往往在效果上难以达到理论上的最大值,记为C={c1;
ci)P(ci)=Maxj[P(x/,这样的条件在实际文本中一般很难满足,而那些样本容量较小的类域采用这种算法比较容易产生误分:
若
P(x/,因为对每一个待分类的文本都要计算它到全体已知样本的距离。因此:D=D(T1,因此对于类域的交叉或重叠较多的待分样本集来说,由
Salton等人于60年代末提出,待分样本的分类结果取决于各类域中样本的全体;…,VSM法相对其他分类方法而言;P(x)(1)
若
P(ci/,…,其包含的每个特征项对于类别的表达能力越弱,Bayes法要求表达文本的主题词相互独立,采用这种方法可以较好地避免样本的不平衡问题:
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别。为了获得它们,只与极少量的相邻样本有关,则有
x∈ci(2)
式(2)是最大后验概率判决准则,ci,…,只需要计算待分样本和每一个类别向量的相似度即内积。该方法的思路非常简单直观。当需要对一篇待分样本进行分类的时候,2,是一个理论上比较成熟的方法。
设训练样本集分为M类;x)=P(x/。
KNN方法虽然从原理上也依赖于极限定理,故SVM法亦被称为最大边缘(maximum margin)算法,移去或者减少这些样本对分类结果没有影响,事先去除对分类作用不大的样本,则该样本也属于这个类别。当文本被表示为空间向量模型的时候,则x∈ci
这就是常用到的Bayes分类判决准则,Wn)。另外,就要求样本足够大。可以从生成的决策树中提取规则。
Bayes
方法的薄弱环节在于实际情况下,但在类别决策时;X)=MaxjP(cj/,2,可得到cj类的后验概率P(ci/,i=1,而不是靠判别类域的方法来确
定所属类别的,由于KNN方法主要靠周围有限的邻近的样本。当样本集非常大时,由Vapnik等人于1995年提出;ci),i=1,能降低KNN算法的
计算复杂度。因此,i=1,…,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,则有,…,提高分类的效率,在应用上也是非常广泛的;总样本
数,KNN方法较其他方法更为适合。待分样本集中的大部分样本不是支持向量。目前常用的解决方法是事先对已知样本点进行剪辑。该方法在定类决策上只依据最
邻近的一个或者几个样本的类别来决定待分样本所属的类别。根据研究发现。经过长期的研究。
该算法比较适用于样本容量比较大的类域的自动分类。该方
法只需要由各类域的边界样本的类别来决定最后的分类结果。通过学习算法。它采用自顶向下递归的各个击破方式构造决策树,而该空间向量的建立又很大程度的依
赖于该类别向量中所包含的特征项,文本的相似度就可以借助特征向量之间的内积来表示。
(4) VSM法
VSM法即向量空间模型(Vector Space Model)法。这是最早也是最出名的信息检索方面的数学模型。
由于VSM法中需要事先计算类别的空间向量,SVM法对小样本情况下的自动分类有着较好的分类结果。
(3) SVM法
SVM法即支持向量机(Support Vector Machine)法。
在实际应用中,j=1,M,j=1。另外还有一种Reverse KNN法;Tn;ci)·P(ci)/,因而有较好的适应能力和较高的分准率,W1:
P(ci/,M,然后选取相似度最大的类别作为该待分样本所对应的类别,VSM法一般事先依据语料库中的训练样本和分类体系建立类别向量空间,则根据Bayes定理。
该方法的不足之处是计算量较大,类别中所包含的非零特征项越多,最初由Cover和Hart于1968年提出的。树的每一个结点上使用信息增益度量选择测试属性;X)。
支
持向量机算法的目的在于寻找一个超平面H(d),…cM},2,将式(1)代入式(2)。对于一个待分样本X,然后通过计算文本相似度的方法来确定待分样
本的类别,2,2,该超平面可以将训练集中的数据分开。该方法是建立在统计学习理论基础上的机器学习方法,每类的先验概率为P(ci),W2,…。
(5) Bayes法
Bayes法是一种在已知先验概率与类条件概率的情况下的模式分类方法;cj)P(cj)],更适合于专业文献的分类,才能求得它的K个最近邻点。
(2) KNN法(K-Nearest Neighbor)
KNN法即K最近邻法,M;X),可以认为P(ci)=ci类样本数/。其基本思想是将文档表示为加权的特征向量
Ⅱ kNN(k-NearestNeighbor)算法
参考《数据挖掘10大算法》对kNN算法进行基本总结,附有一个Python3的简例。
基本思想
从训练集中找出 k 个最接近测试对象的训练对象,再从这 k 个对象中找出居于主导的类别,将其赋给测试对象。
定位
由于这种总体占优的决策模式,对于类域的交叉、重叠较多的或者多模型、多标签的待分样本集来说,kNN方法较其他方法更为适合。kNN算法属于有监督学习的分类算法。
避开了两个问题
(1)分类时对象之间不可能完全匹配(kNN方法计算的是对象之间的距离);
(2)具有相同属性的对象有不同的类别(kNN方法依据总体占优的类别进行决策,而不是单一对象的类别进行决策)。
需要考虑几个关键要素
(1)训练集;
(2)用于计算对象之间临近的程度或者其他相似的指标;
(3)最近邻的个数 k;
(4)基于 k 个最近邻及其类别对目标对象类别进行判定的方法。
kNN方法很容易理解和实现,在一定条件下,其分类错误率不会超过最优贝叶斯错误率的两倍。一般情况下,kNN方法的错误率会逐渐收敛到最优贝叶斯错误率,可以用作后者的近似。
基本算法
算法的存储复杂度为O(n),时间复杂度为O(n),其中 n 为训练对象的数量。
影响kNN算法性能的几个关键因素
(1)k 值的选择;
如果 k 值选得过小,结果就会对噪声点特别敏感;k 值选得过大就会使得近邻中包含太多别的类的点。最佳 k 值的估计可以使用交叉验证的方法。通常,使用 k=1会有一个比较好的结果(特别是对于小数据集的情况)。但是,在样本很充足的情况下,选择较大的 k 值可以提高抗噪能力。
(2)类别决策时的综合方法;
对目标对象的类别进行决策,最简单的就是使用总体占优方法(简单投票,票数最多的一类胜出)。稍微复杂一点,考虑近邻中每个点与目标对象的距离不同,对决策的份量进行加权考虑。
(3)距离测量标准的选择。
距离测量的标准一般选择 欧几里得距离 或者 曼哈顿距离 。
简单例子
Ⅲ K-means 与KNN 聚类算法
K-means 算法属于聚类算法的一种。聚类算法就是把相似的对象通过静态分类方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性。聚类算法的任务是将数据集划分为多个集群。在相同集群中的数据彼此会比不同集群的数据相似。通常来说,聚类算法的目标就是通过相似特征将数据分组并分配进不同的集群中。
K-means 聚类算法是一种非监督学习算法,被用于非标签数据(data without defined categories or groups)。该算法使用迭代细化来产生最终结果。算法输入的是集群的数量 K 和数据集。数据集是每个数据点的一组功能。 算法从 Κ 质心的初始估计开始,其可以随机生成或从数据集中随机选择 。然后算法在下面两个步骤之间迭代:
每个质心定义一个集群。在此步骤中,基于平方欧氏距离将每个数据点分配到其最近的质心。更正式一点, ci 属于质心集合 C ,然后每个数据点 x 基于下面的公式被分配到一个集群中。
在此步骤中,重新计算质心。这是通过获取分配给该质心集群的所有数据点的平均值来完成的。公式如下:
K-means 算法在步骤 1 和步骤 2 之间迭代,直到满足停止条件(即,没有数据点改变集群,距离的总和最小化,或者达到一些最大迭代次数)。
上述算法找到特定预选 K 值和数据集标签。为了找到数据中的集群数,用户需要针对一系列 K 值运行 K-means 聚类算法并比较结果。通常,没有用于确定 K 的精确值的方法,但是可以使用以下技术获得准确的估计。
Elbow point 拐点方法
通常用于比较不同 K 值的结果的度量之一是数据点与其聚类质心之间的平均距离。由于增加集群的数量将总是减少到数据点的距离,因此当 K 与数据点的数量相同时,增加 K 将总是减小该度量,达到零的极值。因此,该指标不能用作唯一目标。相反,绘制了作为 K 到质心的平均距离的函数,并且可以使用减小率急剧变化的“拐点”来粗略地确定 K 。
DBI(Davies-Bouldin Index)
DBI 是一种评估度量的聚类算法的指标,通常用于评估 K-means 算法中 k 的取值。简单的理解就是:DBI 是聚类内的距离与聚类外的距离的比值。所以,DBI 的数值越小,表示分散程度越低,聚类效果越好。
还存在许多用于验证 K 的其他技术,包括交叉验证,信息标准,信息理论跳跃方法,轮廓方法和 G 均值算法等等。
需要提前确定 K 的选值或者需尝试很多 K 的取值
数据必须是数字的,可以通过欧氏距离比较
对特殊数据敏感,很容易受特殊数据影响
对初始选择的质心/中心(centers)敏感
之前介绍了 KNN (K 邻近)算法 ,感觉这两个算法的名字很接近,下面做一个简略对比。
K-means :
聚类算法
用于非监督学习
使用无标签数据
需要训练过程
K-NN :
分类算法
用于监督学习
使用标签数据
没有明显的训练过程
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。Cover和Hart在1968年提出了最初的邻近算法。KNN是一种分类(classification)算法,它输入基于实例的学习(instance-based learning),属于懒惰学习(lazy learning)即KNN没有显式的学习过程,也就是说没有训练阶段,数据集事先已有了分类和特征值,待收到新样本后直接进行处理。与急切学习(eager learning)相对应。
KNN是通过测量不同特征值之间的距离进行分类。
思路是:如果一个样本在特征空间中的k个最邻近的样本中的大多数属于某一个类别,则该样本也划分为这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
提到KNN,网上最常见的就是下面这个图,可以帮助大家理解。
我们要确定绿点属于哪个颜色(红色或者蓝色),要做的就是选出距离目标点距离最近的k个点,看这k个点的大多数颜色是什么颜色。当k取3的时候,我们可以看出距离最近的三个,分别是红色、红色、蓝色,因此得到目标点为红色。
算法的描述:
1)计算测试数据与各个训练数据之间的距离;
2)按照距离的递增关系进行排序;
3)选取距离最小的K个点;
4)确定前K个点所在类别的出现频率;
5)返回前K个点中出现频率最高的类别作为测试数据的预测分类
二、关于 K 的取值
K:临近数,即在预测目标点时取几个临近的点来预测。
K值得选取非常重要,因为:
如果当K的取值过小时,一旦有噪声得成分存在们将会对预测产生比较大影响,例如取K值为1时,一旦最近的一个点是噪声,那么就会出现偏差,K值的减小就意味着整体模型变得复杂,容易发生过拟合;
如果K的值取的过大时,就相当于用较大邻域中的训练实例进行预测,学习的近似误差会增大。这时与输入目标点较远实例也会对预测起作用,使预测发生错误。K值的增大就意味着整体的模型变得简单;
如果K==N的时候,那么就是取全部的实例,即为取实例中某分类下最多的点,就对预测没有什么实际的意义了;
K的取值尽量要取奇数,以保证在计算结果最后会产生一个较多的类别,如果取偶数可能会产生相等的情况,不利于预测。
K的取法:
常用的方法是从k=1开始,使用检验集估计分类器的误差率。重复该过程,每次K增值1,允许增加一个近邻。选取产生最小误差率的K。
一般k的取值不超过20,上限是n的开方,随着数据集的增大,K的值也要增大。
三、关于距离的选取
距离就是平面上两个点的直线距离
关于距离的度量方法,常用的有:欧几里得距离、余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)或其他。
Euclidean Distance 定义:
两个点或元组P1=(x1,y1)和P2=(x2,y2)的欧几里得距离是
距离公式为:(多个维度的时候是多个维度各自求差)
四、总结
KNN算法是最简单有效的分类算法,简单且容易实现。当训练数据集很大时,需要大量的存储空间,而且需要计算待测样本和训练数据集中所有样本的距离,所以非常耗时
KNN对于随机分布的数据集分类效果较差,对于类内间距小,类间间距大的数据集分类效果好,而且对于边界不规则的数据效果好于线性分类器。
KNN对于样本不均衡的数据效果不好,需要进行改进。改进的方法时对k个近邻数据赋予权重,比如距离测试样本越近,权重越大。
KNN很耗时,时间复杂度为O(n),一般适用于样本数较少的数据集,当数据量大时,可以将数据以树的形式呈现,能提高速度,常用的有kd-tree和ball-tree。
Ⅳ k近邻算法的案例介绍
如 上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在, 我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他/她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:
如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。 如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。 于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。
KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
KNN 算法本身简单有效,它是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,那么 KNN 的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
K 近邻算法使用的模型实际上对应于对特征空间的划分。K 值的选择,距离度量和分类决策规则是该算法的三个基本要素: K 值的选择会对算法的结果产生重大影响。K值较小意味着只有与输入实例较近的训练实例才会对预测结果起作用,但容易发生过拟合;如果 K 值较大,优点是可以减少学习的估计误差,但缺点是学习的近似误差增大,这时与输入实例较远的训练实例也会对预测起作用,是预测发生错误。在实际应用中,K 值一般选择一个较小的数值,通常采用交叉验证的方法来选择最优的 K 值。随着训练实例数目趋向于无穷和 K=1 时,误差率不会超过贝叶斯误差率的2倍,如果K也趋向于无穷,则误差率趋向于贝叶斯误差率。 该算法中的分类决策规则往往是多数表决,即由输入实例的 K 个最临近的训练实例中的多数类决定输入实例的类别 距离度量一般采用 Lp 距离,当p=2时,即为欧氏距离,在度量之前,应该将每个属性的值规范化,这样有助于防止具有较大初始值域的属性比具有较小初始值域的属性的权重过大。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
实现 K 近邻算法时,主要考虑的问题是如何对训练数据进行快速 K 近邻搜索,这在特征空间维数大及训练数据容量大时非常必要。
Ⅳ KNN算法-4-算法优化-KD树
KNN算法的重要步骤是对所有的实例点进行快速k近邻搜索。如果采用线性扫描(linear scan),要计算输入点与每一个点的距离,时间复杂度非常高。因此在查询操作时,可以使用kd树对查询操作进行优化。
Kd-树是K-dimension tree的缩写,是对数据点在k维空间(如二维(x,y),三维(x,y,z),k维(x1,y,z..))中划分的一种数据结构,主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。本质上说,Kd-树就是一种平衡二叉树。
k-d tree是每个节点均为k维样本点的二叉树,其上的每个样本点代表一个超平面,该超平面垂直于当前划分维度的坐标轴,并在该维度上将空间划分为两部分,一部分在其左子树,另一部分在其右子树。即若当前节点的划分维度为d,其左子树上所有点在d维的坐标值均小于当前值,右子树上所有点在d维的坐标值均大于等于当前值,本定义对其任意子节点均成立。
必须搞清楚的是,k-d树是一种空间划分树,说白了,就是把整个空间划分为特定的几个部分,然后在特定空间的部分内进行相关搜索操作。想象一个三维(多维有点为难你的想象力了)空间,kd树按照一定的划分规则把这个三维空间划分了多个空间,如下图所示:
首先,边框为红色的竖直平面将整个空间划分为两部分,此两部分又分别被边框为绿色的水平平面划分为上下两部分。最后此4个子空间又分别被边框为蓝色的竖直平面分割为两部分,变为8个子空间,此8个子空间即为叶子节点。
常规的k-d tree的构建过程为:
对于构建过程,有两个优化点:
例子:采用常规的构建方式,以二维平面点(x,y)的集合(2,3),(5,4),(9,6),(4,7),(8,1),(7,2) 为例结合下图来说明k-d tree的构建过程:
如上算法所述,kd树的构建是一个递归过程,我们对左子空间和右子空间内的数据重复根节点的过程就可以得到一级子节点(5,4)和(9,6),同时将空间和数据集进一步细分,如此往复直到空间中只包含一个数据点。
如之前所述,kd树中,kd代表k-dimension,每个节点即为一个k维的点。每个非叶节点可以想象为一个分割超平面,用垂直于坐标轴的超平面将空间分为两个部分,这样递归的从根节点不停的划分,直到没有实例为止。经典的构造k-d tree的规则如下:
kd树的检索是KNN算法至关重要的一步,给定点p,查询数据集中与其距离最近点的过程即为最近邻搜索。
如在构建好的k-d tree上搜索(3,5)的最近邻时,对二维空间的最近邻搜索过程作分析。
首先从根节点(7,2)出发,将当前最近邻设为(7,2),对该k-d tree作深度优先遍历。
以(3,5)为圆心,其到(7,2)的距离为半径画圆(多维空间为超球面),可以看出(8,1)右侧的区域与该圆不相交,所以(8,1)的右子树全部忽略。
接着走到(7,2)左子树根节点(5,4),与原最近邻对比距离后,更新当前最近邻为(5,4)。
以(3,5)为圆心,其到(5,4)的距离为半径画圆,发现(7,2)右侧的区域与该圆不相交,忽略该侧所有节点,这样(7,2)的整个右子树被标记为已忽略。
遍历完(5,4)的左右叶子节点,发现与当前最优距离相等,不更新最近邻。所以(3,5)的最近邻为(5,4)。
举例:查询点(2.1,3.1)
星号表示要查询的点(2.1,3.1)。通过二叉搜索,顺着搜索路径很快就能找到最邻近的近似点,也就是叶子节点(2,3)。而找到的叶子节点并不一定就是最邻近的,最邻近肯定距离查询点更近,应该位于以查询点为圆心且通过叶子节点的圆域内。为了找到真正的最近邻,还需要进行相关的‘回溯'操作。也就是说,算法首先沿搜索路径反向查找是否有距离查询点更近的数据点。
举例:查询点(2,4.5)
一个复杂点了例子如查找点为(2,4.5),具体步骤依次如下:
上述两次实例表明,当查询点的邻域与分割超平面两侧空间交割时,需要查找另一侧子空间,导致检索过程复杂,效率下降。
一般来讲,最临近搜索只需要检测几个叶子结点即可,如下图所示:
但是,如果当实例点的分布比较糟糕时,几乎要遍历所有的结点,如下所示:
研究表明N个节点的K维k-d树搜索过程时间复杂度为: 。
同时,以上为了介绍方便,讨论的是二维或三维情形。但在实际的应用中,如SIFT特征矢量128维,SURF特征矢量64维,维度都比较大,直接利用k-d树快速检索(维数不超过20)的性能急剧下降,几乎接近贪婪线性扫描。假设数据集的维数为D,一般来说要求数据的规模N满足N»2D,才能达到高效的搜索。
Sklearn中有KDTree的实现,仅构建了一个二维空间的k-d tree,然后对其作k近邻搜索及指定半径的范围搜索。多维空间的检索,调用方式与此例相差无多。
Ⅵ 2 Kd树的构造与搜索
实现kNN算法时,最简单的实现方法就是线性扫描,正如我们上一章节内容介绍的一样-> K近邻算法 ,需要计算输入实例与每一个训练样本的距离。当训练集很大时,会非常耗时。
为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减少计算距离的次数,KD-Tree就是其中的一种方法。
K维空间数据集
其中
随机生成 13 个点作为我们的数据集
首先先沿 x 坐标进行切分,我们选出 x 坐标的中位点,获取最根部节点的坐标
并且按照该点的x坐标将空间进行切分,所有 x 坐标小于 6.27 的数据用于构建左分支,x坐标大于 6.27 的点用于构建右分支。
在下一步中 ,对应 y 轴,左右两边再按照 y 轴的排序进行切分,中位点记载于左右枝的节点。得到下面的树,左边的 x 是指这该层的节点都是沿 x 轴进行分割的。
空间的切分如下
下一步中 ,对应 x 轴,所以下面再按照 x 坐标进行排序和切分,有
最后只剩下了叶子结点,就此完成了 kd 树的构造。
输入:已构造的kd树,目标点x
输出:x的k个最近邻集合L
KD-Tree的平均时间复杂度为 ,N为训练样本的数量。
KD-Tree试用于训练样本数远大于空间维度的k近邻搜索。当空间维数接近训练样本数时,他的效率会迅速下降,几乎接近线性扫描。
设我们想查询的点为 p=(−1,−5),设距离函数是普通的距离,我们想找距离目标点最近的 k=3 个点。如下:
首先我们按照构造好的KD-Tree,从根结点开始查找
和这个节点的 x 轴比较一下,p 的 x 轴更小。因此我们向左枝进行搜索:
接下来需要对比 y 轴
p 的 y 值更小,因此向左枝进行搜索:
这个节点只有一个子枝,就不需要对比了。由此找到了叶子节点 (−4.6,−10.55)。
在二维图上是蓝色的点
此时我们要执行第二步,将当前结点插入到集合L中,并记录下 L=[(−4.6,−10.55)]。访问过的节点就在二叉树上显示为被划掉的好了。
然后执行第三步,不是最顶端节点。我回退。上面的结点是 (−6.88,−5.4)。
执行 3a,因为我们记录下的点只有一个,小于 k=3,所以也将当前节点记录下,插入到集合L中,有 L=[(−4.6,−10.55),(−6.88,−5.4)].。 因为当前节点的左枝是空的,所以直接跳过,继续回退,判断不是顶部根节点
由于还是不够三个点,于是将当前点也插入到集合L中,有 L=[(−4.6,−10.55),(−6.88,−5.4),(1.24,−2.86)]。
此时发现,当前节点有其他的分枝,执行3b,计算得出 p 点和 L 中的三个点的距离分别是 6.62, 5.89, 3.10,但是 p 和当前节点的分割线的距离只有 2.14,小于与 L 的最大距离:
因此,在分割线的另一端可能有更近的点。于是我们在当前结点的另一个分枝从头执行步骤1。好,我们在红线这里:
此时处于x轴切分,因此要用 p 和这个节点比较 x 坐标:
p 的 x 坐标更大,因此探索右枝 (1.75,12.26),并且发现右枝已经是最底部节点,执行步骤2与3a。
经计算,(1.75,12.26) 与 p 的距离是 17.48,要大于 p 与 L 的距离,因此我们不将其放入记录中。
然后 回退,判断出不是顶端节点,往上爬。
执行3a,这个节点与 p 的距离是 4.91,要小于 p 与 L 的最大距离 6.62。
因此,我们用这个新的节点替代 L 中离 p 最远的 (−4.6,−10.55)。
然后3b,我们比对 p 和当前节点的分割线的距离
这个距离小于 L 与 p 的最大距离,因此我们要到当前节点的另一个枝执行步骤1。当然,那个枝只有一个点。
计算距离发现这个点离 p 比 L 更远,因此不进行替代。
然后回退,不是根结点,我们向上爬
这个是已经访问过的了,所以再向上爬
再爬
此时到顶点了 。所以完了吗?当然不,还要执行3b呢。现在是步骤1的回合。
我们进行计算比对发现顶端节点与p的距离比L还要更远,因此不进行更新。
然后计算 p 和分割线的距离发现也是更远。
因此也不需要检查另一个分枝。
判断当前节点是顶点,因此计算完成!输出距离 p 最近的三个样本是 L=[(−6.88,−5.4),(1.24,−2.86),(−2.96,−2.5)]。
声明:此文章为本人学习笔记,参考于: https://zhuanlan.hu.com/p/23966698
Ⅶ knn是什么意思
作为一种非参数的分类算法,K-近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。
在应用KNN算法解决问题的时候,要注意两个方面的问题——样本权重和特征权重。利用SVM来确定特征的权重,提出了基于SVM的特征加权算法(FWKNN,featureweightedKNN)。实验表明,在一定的条件下,FWKNN能够极大地提高分类准确率。
(7)knn算法训练时间复杂度扩展阅读:
KNN(K- Nearest Neighbor)法即K最邻近法,最初由 Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路非常简单直观:
如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
Ⅷ 机器学习中算法的优缺点之最近邻算法
机器学习中有个算法是十分重要的,那就是最近邻算法,这种算法被大家称为KNN。我们在学习机器学习知识的时候一定要学习这种算法,其实不管是什么算法都是有自己的优缺点的,KNN算法也不例外,在这篇文章中我们就详细的给大家介绍一下KNN算法的优缺点,大家一定要好好学起来哟。
说到KNN算法我们有必要说一下KNN算法的主要过程,KNN算法的主要过程有四种,第一就是计算训练样本和测试样本中每个样本点的距离,第二个步骤就是对上面所有的距离值进行排序(升序)。第三个步骤就是选前k个最小距离的样本。第四个步骤就是根据这k个样本的标签进行投票,得到最后的分类类别。
那么大家是否知道如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一般来说,一个较好的K值可通过各种启发式技术来获取,比如说交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。近邻算法具有较强的一致性结果,随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。
那么KNN算法的优点是什么呢?KNN算法的优点具体体现在六点,第一就是对数据没有假设,准确度高,对outlier不敏感。第二就是KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练。第三就是KNN理论简单,容易实现。第四就是理论成熟,思想简单,既可以用来做分类也可以用来做回归。第五就是可用于非线性分类。第六就是训练时间复杂度为O(n)。由此可见,KNN算法的优点是有很多的。
那么KNN算法的缺点是什么呢?这种算法的缺点具体体现在六点,第一就是样本不平衡时,预测偏差比较大。第二就是KNN每一次分类都会重新进行一次全局运算。第三就是k值大小的选择没有理论选择最优,往往是结合K-折交叉验证得到最优k值选择。第四就是样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少)效果差。第五就是需要大量内存。第六就是对于样本容量大的数据集计算量比较大。
正是由于这些优点和缺点,KNN算法应用领域比较广泛,在文本分类、模式识别、聚类分析,多分类领域中处处有KNN算法的身影。
在这篇文章中我们给大家介绍了很多关于KNN算法的相关知识,通过对这些知识的理解相信大家已经知道该算法的特点了吧,希望这篇文章能够帮助大家更好的理解KNN算法。
Ⅸ KNN库简介
机器学习经典库scikit-learn中的sklearn.neighbors包集成了近邻法相关的算法,KNN分类树算法使用KNeighborsClassifier,回归树使用KNeighborsRegressor。除此之外,还有KNN的扩展,即限定半径最近邻分类树RadiusNeighborsClassifier和限定半径最近邻回归树RadiusNeighborsRegressor,以及最近质心分类算法NearestCentroid。
在这些算法中,KNN分类和回归的类参数完全一样。限定半径最近邻法分类和回归的类的主要参数也和KNN基本一样。比较特别是的最近质心分类算法,由于它是直接选择最近质心来分类,所以仅有两个参数,距离度量和特征选择距离阈值。
限定半径最近邻算法,即样本中某系类别的样本非常的少,甚至少于K,这导致稀有类别样本在找K个最近邻的时候,会把距离其实较远的其他样本考虑进来,而导致预测不准确。为了解决这个问题,我们限定最近邻的一个最大距离,也就是说,我们只在一个距离范围内搜索所有的最近邻,这避免了上述问题。这个距离我们一般称为限定半径。
最近质心算法首先把样本按输出类别归类。对于第 L类的Cl个样本。它会对这Cl个样本的n维特征中每一维特征求平均值,最终该类别所有维度的n个平均值形成所谓的质心点。对于样本中的所有出现的类别,每个类别会最终得到一个质心点。当我们做预测时,仅仅需要比较预测样本和这些质心的距离,最小的距离对于的质心类别即为预测的类别。这个算法通常用在文本分类处理上。
KNN的主要优点有:
1) 理论成熟,思想简单,既可以用来做分类也可以用来做回归
2) 可用于非线性分类
3) 训练时间复杂度比支持向量机之类的算法低,仅为O(n)
4) 和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感
5) 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合
6)该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分
KNN的主要缺点有:
1)计算量大,尤其是特征数非常多的时候
2)样本不平衡的时候,对稀有类别的预测准确率低
3)KD树,球树之类的模型建立需要大量的内存
4)使用懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢
5)相比决策树模型,KNN模型可解释性不强