导航:首页 > 源码编译 > 速度系数算法

速度系数算法

发布时间:2022-10-09 17:40:18

1. 输液的速度如何计算公式是什么

公式如下:

每小时输入量(ml)= 每分钟滴数×4

每分钟滴数(gtt/min)= 输入液体总ml数 ÷ [输液总时间(h)×4]

输液所需时间(h)= 输入液体总ml数 ÷(每分钟滴数×4)

我国临床常用的输液器滴系数有10、15、20滴/ml三种型号,根据输液器滴系数可进行如下公式推理:

每小时输入的毫升数(ml/h)=(滴/min)×60 min/h)/滴系数(滴/ml)。

因此,当滴系数为10、15、20滴/ml时,分别代入上述公式即可得出:

1、滴系数为10滴/ml,则:每小时输入的毫升数=(滴数/min)×6。

2、滴系数为15滴/ml,则:每小时输入的毫升数=(滴数/min)×4。

3、滴系数为20滴/ml,则:每小时输入的毫升数=(滴数/min)×3。

每个输液器其滴系数是固定不变的,故在已知每小时输入的毫升数和每分钟滴数两者之间的任意一个变量时,利用上述3个公式,即可得出另一个变量。

(1)速度系数算法扩展阅读:

输液过快的影响:

通常我们正确的输液速度一般药物是在40-60滴/分钟。

速度过快的话,就是说我们迅速地把液体输入到这个循环中间去,所以他的循环血量迅速的增加。

增加以后,病人可能心脏负荷会重,循环负荷过重,所以病人会可能出现胸闷、咳嗽,甚至咳出来一些粉红色的泡沫样痰。

这个就是一个非常典型的急性肺水肿,我们叫循环负荷过重的表现。

2. 怎么样算出电机和减速机之间的速度系数

速度系数?
你是说速比吗?
齿轮减速机的速比是靠齿数来计算的。总速比等于每一级速比的乘积I=(Z2/z1)X(Z4/Z3)....

3. 反应速率常数计算公式

反应速率常数计算公式是:r=k【A】^a【B】^b,此比例系数k,是一个与浓度无关的量,称为速率常数,也称为速率系数。由于在数值上它相当于参加反应的物质都处于单位浓度时的反应速率,故又称为反应的比速率。
速率常数k是化学动力学中一个重要的物理量,其数值直接反映了速率的快慢。要获得化学反应的速率方程,首先需要收集大量的实验数据,然后在经归纳整理而得。其是确定反应机理的主要依据,在化学工程中,又是设计合理的反应器的重要依据。

4. 匀变加速度直线运动的速度计算公式(匀变加速度,而不是匀变速)

楼主是不是写错了,求的是a=(mg-ks)/m
如果是的话,下面给出了解法;如果不是,只是系数上有差异,其余方法不变。
解一个二阶微分方程
s''=-k/m*(s-mg/k)
初始条件t=0 时
s = 0, s' = 0
可以解得:
s = mg/k - mg/k * cos( sqrt(k/m)*t )
(其中s'表示s的一阶导数,s'’表示二阶导数,sqrt表示开平方)

其实这个问题就是有重力加速度的简谐振动,这种情况只是平衡位置变为mg/k处,振幅为mg/k,位移公式直接用简谐振动的公式写出,同样得到上式。

5. 收尾速度计算公式

公式:V·R·R/G=20。

单说收尾速度与空气阻力关系在横截面面积相等时成正比,收尾速度相等时空气阻力与球半径的平方成正比。

也就时合外力为零的时候就时阻力=重力时在用公式G=阻力f=kmρv^2,其中M为质量,P为密度,V为速度,K为比例系数。K值由介质性质决定,在空气中,K为1根据一系列公式可以算出来。

收尾速度

是指若静止从空中释放一个物体,那么在释放瞬间,它只受重力作用,由于受力不平衡,它将加速向下运动;随着下落速度的不断增大,落体所受的空气阻力也会随之变大,但只要空气阻力仍小于重力,物体仍会继续加速下落;当空气阻力增大到与物体重力相等时,落体的速度达到最大,并做匀速运动。

6. 气体泄漏速度的计算公式到底应该是什么

式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。

对于天然气而言,在标准状态下天然气积流量的实用计算公式为:

式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。

差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。

(2)速度式流量计

速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有:

① 涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变化,产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体的体积流量成正比。涡轮流量计的理论流量方程为:

式中n为涡轮转速;qv为体积流量;A为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关的参数;B为与涡轮顶隙、流体流速分布有关的系数;C为与摩擦力矩有关的系数。

② 涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则的交替排列的旋涡涡街。在一定的流量(雷诺数)范围内,旋涡的分离频率与流经涡街流量传感器处流体的体积流量成正比。涡街流量计的理论流量方程为:

式中,qf为工况下的体积流量,m3/s;D为表体通径,mm;M为旋涡发生体两侧弓形面积与管道横截面积之比;d为旋涡发生体迎流面宽度,mm;f为旋涡的发生频率,Hz;Sr为斯特劳哈尔数,无量纲。

③ 旋进涡轮流量计:当流体通过螺旋形导流叶片组成的起旋器后,流体被强迫围绕中心线强烈地旋转形成旋涡轮,通过扩大管时旋涡中心沿一锥形螺旋形进动。在一定的流量(雷诺数)范围内,旋涡流的进动频率与流经旋进涡流量传感器处流体的体积流量成正比。旋进旋涡流量计的理论流量方程为:

式中,qf为工况下的体积流量,m3/s;f为旋涡频率,Hz;K为流量计仪表系数,P/m3(p为脉冲数)。

④ 时差式超声波流量计:当超声波穿过流动的流体时,在同一传播距离内,其沿顺流方向和沿逆流方向的传播速度则不同。在较宽的流量(雷诺数)范围内,该时差与被测流体在管道中的体积流量(平均流速)成正比。超声波流量计的流量方程式为:

式中,qf为工况下的体积流量,m3/s;V为流体通过超声换能器皿1、2之间传播途径上的声道长度,m;L为超声波在换能器1、2之间传播途径上的声道长度,m;X为传播途径上的轴向分量,m;t1为超声波顺流传播的时间,s;t2为超声波逆流传播的时间,s。

速度式气体流量计一般由流量传感器和显示仪组成,对温度和压力变化的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)、流量积算仪(温压补偿)或流量计算机(温压及压缩因子补偿);对准确度要求更高的场合(如贸易天然气),则另配置在线色谱仪连续分析混合气体的组分或物性值计算压缩因子、密度、发热量等。

(3)容积式流量计

在容积式流量计的内部,有一构成固定的大空间和一组将该空间分割成若干个已知容积的小空间的旋转体,如腰轮、皮膜、转筒、刮板、椭圆齿轮、活塞、螺杆等。旋转体在流体压差的作用下连续转动,不断地将流体从已知容积的小空间中排出。根据一定时间内旋转体转动的次数,即可求出流体流过的体积量。容积式流量计的理论流量计算公式:

式中,qf为工况下的体积流量,m3/s;n为旋转体的流速,周/s;V为旋转体每转一周所排流体的体积,m3/周。

在标准状态下,容积式流量计的体积流量计算公式与速度流量计相同。气体容积式流量计属机械式仪表,一般由测量体和积算器组成,对温度和压力变化的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)、流量积算仪(温压补偿)或流量计算机(温压及压缩因子补偿)。

2 气体流量计现场应用存在的问题分析

综上所述,各种不同类型的气体流量计其输出的信号只与工况流量呈正比例(线性刻度)关系,其与被测介质标态流量之间的刻度只能依据其某一特定工况(如设计工况)来确定,如果现场的实际工况(如介质的温度、压力、成分及流量范围等)已经发生了变化,这时仍按原刻度关系读取标态流量,显然就会产生不同程度的附加误差,使流量读数(原刻度)失去意义。要想准确地测量气体流量,则就要求使用现场实际工况与设计工况一致并保持稳定。然而实际工况经常发生变化,也正因为变化才需要快速、可靠地知道变化后实际工况下条件下的准确流量,否则,测量的意义也就不复存在。

在现场实际应用中,工况稳定是相对的,变化是绝对的。因此,气体流量计除了需要配置作为关键部分的流量传感器之外,对工况变化有规律、准确度要求不高,无需远传或自动控制的场合,采取配置压力计、温度计、计算器由人工录取参数查表格的方法计算流量这种补偿方式不仅不连续、不快捷,而且繁琐、误差大。在绝大多数情况下,现场实际工况变化往往是突发和未知的,不仅频繁出现且波动范围大,此时仍依靠人工录取参数查表格方法快速而又准确地计算流量已不现实,必须采取自动补偿措施。

3 含水量的测量

为了实现自动补偿,曾经经历了最初的机械补偿阶段,这种补偿方式只能对某一参数(如压力)进行校正,由于流量计不仅结构复杂、体积笨重、可动部件多,故障率高,而且准确度低,当补偿不完全时,还得进行定点校正;该方式应用时不够灵活,对于参数频繁波动的场合则无法正常发挥补偿作用。其后出现的机械式电动补偿装置,它将介质的工况质量、压力及温度参数,分别转换成电阻或电压等形式的信号,通过电路并配合机械机构组成自动补偿系统,以完成连续补偿运算,但这类补偿装置仍存在结构复杂,调校困难的缺点;补偿不完全,准确度也不高,电动单元组合仪表的出现给流量自动 补偿带来了转机,它通过变送器同时检测出流体的工况流量、压力及温度等参数,并将其转换为相应的统一电流信号,按照某种运算关系,将这些信号送入计算单元(如加减器、乘除器、开方器、比例积算器等)进行运算,然后输出代表补偿后的流量信号用于显示、记录或控制,这种方法实现了快捷的自动连续补偿、准确度也有所提高,单元组合仪表具有通用性强、系统组成灵活的优点,但仍然存在补偿不完全的缺点,随着集成电路的发展和计算机技术的应用,气体流量自动全补偿方案的实现已出现曙光而成为现实,大规模集成电路具有运行稳定可靠、体积小、功能强的优点,计算机具有强大的运算能力和数据存储能力,可以实现多功能、多参数、多支路、主准确度的补偿,流量积算仪(温压补偿)或流量计算机(全补偿)已成为当前流量仪表的主流。

从现场使用的角度来看,真正意义上的气体流量计不是仅指流量传感器而是一个系统,应是:由节流装置或流量传感器(变送器)、压力传感器(变送器)、温度传感器(变送器)、在线密度计或色谱仪、流量积算仪或流量计算机组成的一个完整的计量系统。其理由有:第一,现场管理的需要, 经过全补偿的体积流量不仅在控制室能看到,在操作现场也能方便的同步看到.第二,安全可靠的需要,目前的流量积算仪或流量计算机能同时计算和控制多路流量即是优点又是缺点,当其硬件或软件出现故障时多路流量同时受影响。第三,量传检定的需要,如前所述,气体流量是由多参数决定的,其补偿的数学模型及过程繁琐复杂,如湿气、饱和蒸气、天然气等介质的计量问题,热值能量计量问题,气体流量计是由多台仪表(仪器)组成的一个系统,涉及到长度、力学、热工、化学、时间、电磁等专业,用户希望将其看成一个黑匣子,不管过程只认结果,然而目前的计量检定标准装置只能按专业分别对单一参数进行量传检定,就流量传感器(变送器)方面 ,绝大多数流量计制造厂家和计量检定机构也只能用水或低压空气代替实际介质检定流量传感器(变送器),目前标准节流装置装置一般只检几何尺寸不检流出系数,然后将组合后用到实际介质实际工况中去,很显然这种检定方法其代表性不完全,将会带来误差,所以说目前流量准确性的保证是间接是间接而非直接的,正如同单元组合仪表一样,“单校”不能完全代表“联校”。因此使用实际介质在实际(模拟)工况下对气体流量计进行系统检定是保证计量结果准确可靠有效的手段。一体化的气体流量计能很方便的实现这种真正意义的量值传递或溯源。

阅读全文

与速度系数算法相关的资料

热点内容
安阳少儿编程市场 浏览:496
云服务器建设原理 浏览:258
javajunit4for 浏览:845
华为服务器如何进阵列卡配置 浏览:435
apache服务器ip地址访问 浏览:718
如何买到安卓手机预装软件 浏览:537
冤罪百度云不要压缩 浏览:87
苏州云存储服务器 浏览:177
解压收纳原声 浏览:386
java注册验证 浏览:376
火花app怎么上推荐 浏览:981
什么app能游戏投屏到电视上 浏览:455
服务器托管到云端是什么意思 浏览:836
app保存草稿怎么用 浏览:808
安卓如何进入proumb 浏览:144
主机虚拟云服务器 浏览:619
删除分区加密的空间会不会恢复 浏览:706
京东app客户上门怎么看搜索量 浏览:741
怎么在农行app购买黄金 浏览:46
c型开发板和单片机 浏览:146