导航:首页 > 源码编译 > 降序排序算法python

降序排序算法python

发布时间:2022-10-10 18:45:25

‘壹’ 怎样用python将数组里的数从高到低排序

1、首先我们定义一个列表输入一串大小不一的数字。

‘贰’ python生成20个随机数列表,前10个升序后10个降序

importrandom

list1=[]

foriinrange(20):

list1.append(random.random())

listL=sorted(list1[:10],reverse=False)

listR=sorted(list1[10:],reverse=True)

print(listL+listR)

‘叁’ 深入理解python中的排序sort

进行一个简单的升序排列直接调用sorted()函数,函数将会返回一个排序后的列表:

sorted函数不会改变原有的list,而是返回一个新的排好序的list

如果你想使用就地排序,也就是改变原list的内容,那么可以使用list.sort()的方法,这个方法的返回值是None。

另一个区别是,list.sort()方法只是list也就是列表类型的方法,只可以在列表类型上调用。而sorted方法则是可以接受任何可迭代对象。

list.sort()和sorted()函数都有一个key参数,可以用来指定一个函数来确定排序的一个优先级。比如,这个例子就是根据大小写的优先级进行排序:

key参数的值应该是一个函数,这个函数接受一个参数然后返回以一个key,这个key就被用作进行排序。这个方法很高效,因为对于每一个输入的记录只需要调用一次key函数。
一个常用的场景就是当我们需要对一个复杂对象的某些属性进行排序时:

再如:

前面我们看到的利用key-function来自定义排序,同时Python也可以通过operator库来自定义排序,而且通常这种方法更好理解并且效率更高。
operator库提供了 itemgetter(), attrgetter(), and a methodcaller()三个函数

同时还支持多层排序

list.sort()和sorted()都有一个boolean类型的reverse参数,可以用来指定升序和降序排列,默认为false,也就是升序排序,如果需要降序排列,则需将reverse参数指定为true。

排序的稳定性指,有相同key值的多个记录进行排序之后,原始的前后关系保持不变

我们可以看到python中的排序是稳定的。

我们可以利用这个稳定的特性来进行一些复杂的排序步骤,比如,我们将学生的数据先按成绩降序然后年龄升序。当排序是稳定的时候,我们可以先将年龄升序,再将成绩降序会得到相同的结果。

传统的DSU(Decorate-Sort-Undecorate)的排序方法主要有三个步骤:

因为元组是按字典序比较的,比较完grade之后,会继续比较i。
添加index的i值不是必须的,但是添加i值有以下好处:

现在python3提供了key-function,所以DSU方法已经不常用了

python2.x版本中,是利用cmp参数自定义排序。
python3.x已经将这个方法移除了,但是我们还是有必要了解一下cmp参数
cmp参数的使用方法就是指定一个函数,自定义排序的规则,和java等其他语言很类似

也可以反序排列

python3.x中可以用如下方式:

‘肆’ 面试必会八大排序算法(Python)

一、插入排序

介绍

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据。

算法适用于少量数据的排序,时间复杂度为O(n^2)。

插入排算法是稳定的排序方法。

步骤

①从第一个元素开始,该元素可以认为已经被排序

②取出下一个元素,在已经排序的元素序列中从后向前扫描

③如果该元素(已排序)大于新元素,将该元素移到下一位置

④重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

⑤将新元素插入到该位置中

⑥重复步骤2

排序演示

算法实现

二、冒泡排序

介绍

冒泡排序(Bubble Sort)是一种简单的排序算法,时间复杂度为O(n^2)。

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

原理

循环遍历列表,每次循环找出循环最大的元素排在后面;

需要使用嵌套循环实现:外层循环控制总循环次数,内层循环负责每轮的循环比较。

步骤

①比较相邻的元素。如果第一个比第二个大,就交换他们两个。

②对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。

③针对所有的元素重复以上的步骤,除了最后一个。

④持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

算法实现:

三、快速排序

介绍

快速排序(Quicksort)是对冒泡排序的一种改进,借用了分治的思想,由C. A. R. Hoare在1962年提出。

基本思想

快速排序的基本思想是:挖坑填数 + 分治法。

首先选出一个轴值(pivot,也有叫基准的),通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

实现步骤

①从数列中挑出一个元素,称为 “基准”(pivot);

②重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边);

③对所有两个小数列重复第二步,直至各区间只有一个数。

排序演示

算法实现

四、希尔排序

介绍

希尔排序(Shell Sort)是插入排序的一种,也是缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法,时间复杂度为:O(1.3n)。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

·插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率;

·但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位。

基本思想

①希尔排序是把记录按下标的一定量分组,对每组使用直接插入算法排序;

②随着增量逐渐减少,每组包1含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法被终止。

排序演示

算法实现

五、选择排序

介绍

选择排序(Selection sort)是一种简单直观的排序算法,时间复杂度为Ο(n2)。

基本思想

选择排序的基本思想:比较 + 交换。

第一趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;

第二趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;

以此类推,第 i 趟,在待排序记录ri ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

排序演示

选择排序的示例动画。红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

算法实现

六、堆排序

介绍

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。

利用数组的特点快速指定索引的元素。

基本思想

堆分为大根堆和小根堆,是完全二叉树。

大根堆的要求是每个节点的值不大于其父节点的值,即A[PARENT[i]] >=A[i]。

在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

排序演示

算法实现

七、归并排序

介绍

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

基本思想

归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

算法思想

自上而下递归法(假如序列共有n个元素)

① 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;

② 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;

③ 重复步骤②,直到所有元素排序完毕。

自下而上迭代法

① 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

② 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

③ 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

④ 重复步骤③直到某一指针达到序列尾;

⑤ 将另一序列剩下的所有元素直接复制到合并序列尾。

排序演示

算法实现

八、基数排序

介绍

基数排序(Radix Sort)属于“分配式排序”,又称为“桶子法”。

基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m) ,其中 r 为采取的基数,而m为堆数。

在某些时候,基数排序法的效率高于其他的稳定性排序法。

基本思想

将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

基数排序按照优先从高位或低位来排序有两种实现方案:

MSD(Most significant digital) 从最左侧高位开始进行排序。先按k1排序分组, 同一组中记录, 关键码k1相等,再对各组按k2排序分成子组, 之后, 对后面的关键码继续这样的排序分组, 直到按最次位关键码kd对各子组排序后. 再将各组连接起来,便得到一个有序序列。MSD方式适用于位数多的序列。

LSD (Least significant digital)从最右侧低位开始进行排序。先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。LSD方式适用于位数少的序列。

排序效果

算法实现

九、总结

各种排序的稳定性、时间复杂度、空间复杂度的总结:

平方阶O(n²)排序:各类简单排序:直接插入、直接选择和冒泡排序;

从时间复杂度来说:

线性对数阶O(nlog₂n)排序:快速排序、堆排序和归并排序;

O(n1+§))排序,§是介于0和1之间的常数:希尔排序 ;

线性阶O(n)排序:基数排序,此外还有桶、箱排序。

‘伍’ python怎么使用sort

Python中的sort()方法用于数组排序,本文以实例形式对此加以详细说明:
一、基本形式
列表有自己的sort方法,其对列表进行原址排序,既然是原址排序,那显然元组不可能拥有这种方法,因为元组是不可修改的。

x = [4, 6, 2, 1, 7, 9]
x.sort()
print x # [1, 2, 4, 6, 7, 9]

如果需要一个排序好的副本,同时保持原有列表不变,怎么实现呢

x =[4, 6, 2, 1, 7, 9]
y = x[ : ]
y.sort()
print y #[1, 2, 4, 6, 7, 9]
print x #[4, 6, 2, 1, 7, 9]

注意:y = x[:] 通过分片操作将列表x的元素全部拷贝给y,如果简单的把x赋值给y:y = x,y和x还是指向同一个列表,并没有产生新的副本。
另一种获取已排序的列表副本的方法是使用sorted函数:

x =[4, 6, 2, 1, 7, 9]
y = sorted(x)
print y #[1, 2, 4, 6, 7, 9]
print x #[4, 6, 2, 1, 7, 9]

sorted返回一个有序的副本,并且类型总是列表,如下:

print sorted('Python') #['P', 'h', 'n', 'o', 't', 'y']

二、自定义比较函数
可以定义自己的比较函数,然后通过参数传递给sort方法:

def comp(x, y):
if x < y:
return 1
elif x > y:
return -1
else:
return 0

nums = [3, 2, 8 ,0 , 1]
nums.sort(comp)
print nums # 降序排序[8, 3, 2, 1, 0]
nums.sort(cmp) # 调用内建函数cmp ,升序排序
print nums # 降序排序[0, 1, 2, 3, 8]

三、可选参数
sort方法还有两个可选参数:key和reverse

1、key在使用时必须提供一个排序过程总调用的函数:

x = ['mmm', 'mm', 'mm', 'm' ]
x.sort(key = len)
print x # ['m', 'mm', 'mm', 'mmm']

2、reverse实现降序排序,需要提供一个布尔值:

y = [3, 2, 8 ,0 , 1]
y.sort(reverse = True)
print y #[8, 3, 2, 1, 0]

以上是云栖社区小编为您精心准备的的内容,在云栖社区的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索python , 方法 sort python sort方法、python魔术方法详解、python实例方法详解、list.sort 使用方法、c list.sort 使用方法,以便于您获取更多的相关知识。

‘陆’ python怎么降序排列

最为简单的方法是利用表理解,生成一个新的字典 必须要保证键值是一一对应的 d = {'one':1, 'two':2, 'three':3, 'four':4}di = {v:k for k,v in d.items()}di。

import pandas as pd。

s=pd.Series(range(10))。

s.sort_values(ascending=False)。

算法稳定性

冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。

‘柒’ python用户输入若干个整数,按降序打印输出在一行(使用空格间隔),并给出中位数

# coding=gbk
import numpy as np

inputStr = input("请输入多个整数,以空格分隔:")
# 使用列表推导式将输入的内容以空格分隔,如果有小数,则通过int函数变为整数
input_lists = [int(num) for num in inputStr.split(" ")]
# 通过sort方法,并使用参数reverse=True,来将列表的数据以降序排列
input_lists.sort(reverse=True)
# 由于通过",".join()连接的列表不能有整数元素,所以通过列表推导式将列表每个元素通过str转为字符串后,再联接为以逗号分隔的字符串
print(",".join([str(num) for num in input_lists]))

# 使用numpy的median函数来得到中位数
print(np.median(input_lists))

‘捌’ 用python对10个数进行排序

sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last')

by:可以填入字符串或者字符串组成的列表。也就是说,如果axis=0,那么by="列名";如果axis=1,那么by="行名"。

axis:{0 or ‘index’, 1 or ‘columns’}, default 0,意思就是如果axis=0,就按照索引排序,即纵向排序;如果axis=1,则按列排序,即横向排序。默认是axis=0。

ascending:输入布尔型,True是升序,False是降序,也可以可以是[True,False],即第一个字段升序,第二个字段降序 。

inplace: 输入布尔型,是否用排序后的数据框替换现有的数据框(这个在之前的文章写过很多次了~)

kind:排序的方法,{‘quicksort’, ‘mergesort’, ‘heapsort’},默认是使用‘quicksort’。这个参数用的比较少,大家可以试一试。

na_position :{‘first’, ‘last’},缺失值的排序,也就说决定将缺失值放在数据的最前面还是最后面。first是排在前面,last是排在后面,默认是用last。

创建数据表:

scores=pd.DataFrame([[87,56,85],[46,87,97],[34,65,86]],
columns=['jack','rose','mike'])
scores

‘rose’这一列进行降序排序:

df_sc=scores.sort_values(by='rose',ascending=False)
df_sc

‘mike’这一列进行升序排序:

df_sc=scores.sort_values(by='mike',ascending=True)
df_sc

对第0行进行升序排序:

scores.sort_values(by=0,axis=1,ascending=True)

我们再尝试对第1行进行升序,第0行进行降序:

scores.sort_values(by=[1,0],axis=1,ascending=[True,False]

‘玖’ Python将列表[8,41,33,13]中的最后两个元素依次移到列表首部,并将列表降序排序后输出

ls = [8, 41, 33, 13]
temp = ls[0] # 让一个临时变量temp指向第一个元素,第一个元素的位置就空出来了
ls[0] = ls[len(ls) - 2] # 第一个元素的位置指向倒数第二个元素,倒数第二的位置空了
ls[len(ls) - 2] = temp # 让倒数第二的位置指向临时变量temp指向的值
print(ls)
temp = ls[0]
ls[0] = ls[len(ls) - 1] # 再把最后一个元素用同样的方法挪到首部
ls[len(ls) - 1] = temp
print(ls)
ls.sort(reverse=True) # 对移动后的列表降序排列
print(ls)

‘拾’ Python删除最高分最低分次数前2的评委,计算平均分,降序排序怎么实现

先保存在列表中再去除掉列表中最大和最小,代码如下:

n = int(input('请输入删除高分低分前几位:'))contents

[95,90,100,80,75,85,75,60,65,80,90,95,85,60]for i in range(n):#for循环除去最大最小

contents.remove(max(contents))

contents.remove(min(contents))print(sorted(contents,reverse=True))#排序

print(sum(contents)/len(contents))#算平均

Python由荷兰数学和计算机科学研究学会的Guido van Rossum于1990 年代初设计,作为一门叫做ABC语言的替代品。

Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。

Python解释器易于扩展,可以使用C或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。Python 也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。

2021年10月,语言流行指数的编译器Tiobe将Python加冕为最受欢迎的编程语言,20年来首次将其置于Java、C和JavaScript之上。

阅读全文

与降序排序算法python相关的资料

热点内容
app保存草稿怎么用 浏览:806
安卓如何进入proumb 浏览:141
主机虚拟云服务器 浏览:617
删除分区加密的空间会不会恢复 浏览:703
京东app客户上门怎么看搜索量 浏览:739
怎么在农行app购买黄金 浏览:45
c型开发板和单片机 浏览:146
虚拟机建立用户的模板文件夹 浏览:904
无锡代码编程培训班 浏览:631
eps图形数据加密 浏览:933
没有滴滴app怎么打车 浏览:101
大数乘法java 浏览:1001
如何登录服务器看源码 浏览:526
如何做服务器端 浏览:157
注册服务器地址指什么 浏览:434
文本命令行 浏览:98
扑克牌睡眠解压 浏览:197
rc4算法流程图 浏览:162
胡萝卜解压方法 浏览:39
扫描pdf格式软件 浏览:880