导航:首页 > 源码编译 > 多条公交线路蚁群算法优化

多条公交线路蚁群算法优化

发布时间:2022-10-11 20:05:21

⑴ 蚁群算法优化BP神经网络 遇到的问题。

蚁群算法的实质是遗传算法,为了避免陷入局部最优解,我使用的办法是基因多样化算法,初始化基因组时,多取几组随机值,然后对这n组数据同时进化优化,并行计算。这样可以大大减低陷入局部最优解的风险

⑵ 请教,采用蚁群算法求解TSP问题的oliver30最优路径

给你产考产考//蚁群算法关于简单的TSP问题求解//#include#include#include#include#include#defineM13//蚂蚁的数量#defineN144//城市的数量#defineR1000//迭代次数#defineIN1//初始化的信息素的量#defineMAX0x7fffffff//定义最大值structcoordinate{charcity[15];//城市名intx;//城市相对横坐标inty;//城市相对纵坐标}coords[N];doublegraph[N][N];//储存城市之间的距离的邻接矩阵,自己到自己记作MAXdoublephe[N][N];//每条路径上的信息素的量doubleadd[N][N];//代表相应路径上的信息素的增量doubleyita[N][N];//启发函数,yita[i][j]=1/graph[i][j]intvis[M][N];//标记已经走过的城市intmap[M][N];//map[K][N]记录第K只蚂蚁走的路线doublesolution[M];//记录某次循环中每只蚂蚁走的路线的距离intbestway[N];//记录最近的那条路线doublebestsolution=MAX;intNcMax;//代表迭代次数,理论上迭代次数越多所求的解更接近最优解,最具有说服力doublealpha,betra,rou,Q;voidInitialize();//信息初始化voidInputcoords(FILE*fp);//将文件中的坐标信息读入voidGreateGraph();//根据坐标信息建图doubleDistance(int*p);//计算蚂蚁所走的路线的总长度voidResult();//将结果保存到out.txt中voidInitialize(){alpha=2;betra=2;rou=0.7;Q=5000;NcMax=R;return;}voidInputcoords(FILE*fp){inti;intnumber;if(fp==NULL){printf("Sorry,thefileisnotexist\n");exit(1);}else{for(i=0;idrand)break;}vis[k][j]=1;//将走过的城市标记起来map[k][s]=j;//记录城市的顺序}s++;}memset(add,0,sizeof(add));for(k=0;k20)//设立一个上界,防止启发因子的作用被淹没phe[i][j]=20;}}memset(vis,0,sizeof(vis));memset(map,-1,sizeof(map));}Result();printf("Resultissavedinout.txt\n");return0;}

⑶ 蚁群算法的路径规划,每一次的结果都不同么

蚁群算法 属于随机优化算法的一种,随机优化算法,由于开始和过程都是随机的数值,所以每次产生的结果都不一样。但大致收敛方向是一致的。

⑷ 如何提高蚁群路由算法收敛速度

述了。
目前蚁群算法主要用在组合优化方面,基本蚁群算法的思路是这样的:
1.
在初始状态下,一群蚂蚁外出,此时没有信息素,那么各自会随机的选择一条路径。
2.
在下一个状态,每只蚂蚁到达了不同的点,从初始点到这些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路径上信息素的多少选择路线(selection),更倾向于选择信息素多的路径走(当然也有随机性)。
3.
又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信息素不同程度的挥发掉了(evaporation),而刚刚经过了蚂蚁的路线信息素增强(reinforcement)。然后又出动一批蚂蚁,重复第2个步骤。
每个状态到下一个状态的变化称为一次迭代,在迭代多次过后,就会有某一条路径上的信息素明显多于其它路径,这通常就是一条最优路径。
关键的部分在于步骤2和3:
步骤2中,每只蚂蚁都要作出选择,怎样选择呢?
selection过程用一个简单的函数实现:
蚂蚁选择某条路线的概率=该路线上的信息素÷所有可选择路线的信息素之和
假设蚂蚁在i点,p(i,j)表示下一次到达j点的概率,而τ(i,j)表示ij两点间的信息素,则:
p(i,j)=τ(i,j)/∑τ(i)
(如果所有可选路线的信息素之和∑τ(i)=0,即前面还没有蚂蚁来过,概率就是一个[0,1]上的随机值,即随机选择一条路线)
步骤3中,挥发和增强是算法的关键所在(也就是如何数学定义信息素的)
evaporation过程和reinforcement过程定义了一个挥发因子,是迭代次数k的一个函数
ρ(k)=1-lnk/ln(k+1)
最初设定每条路径的信息素τ(i,j,0)为相同的值
然后,第k+1次迭代时,信息素的多少
对于没有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),显然信息素减少了
有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|w|,w为所有点的集合
为什么各个函数要如此定义,这个问题很难解释清楚,这也是算法的精妙所在。如此定义信息素的挥发和增强,以及路径选择,根据马尔可夫过程(随机过程之一)能够推导出,在迭代了足够多次以后,算法能够收敛到最佳路径。
组合优化很有意思的,像禁忌搜索、模拟退火、蚁群算法、遗传算法、神经网络这些算法能够解决很多生活中的实际问题,楼主有空可以招本书看看。

⑸ 求教:蚁群算法选择最短路径问题

这个例子其实是当初数模比赛时用来完成碎片拼接的,但其所用到原理还是求解最短路径的原理。但这里的最短路径和数据结构中最短路径有一定的区别。在数据结构中,对于最短路径的求解常用的一般有Dijkstra算法与Floyd算法,但对于要求出一条经过所有的点的并且要求路径最短,这些算法还是有一定的局限性的。而蚁群算法则很好地满足了这些条件。话说回来,很想吐槽一下网络流传的一些蚁群算法的例子,当初学习这个时候,身边也没有相关的书籍,只好到网上找例子。网上关于这个算法源代码的常见的有2个版本,都是出自博客,但是在例子都代码是不完整的,缺失了一部分,但就是这样的例子,居然流传甚广,我很好奇那些转载这些源码的人是否真的有去学习过这些,去调试过。当然,我下面的例子也是无法直接编译通过的,因为涉及到图像读取处理等方面的东西,所以就只贴算法代码部分。但是对于这个问题蚁群算法有一个比较大的缺点,就是收敛很慢,不过对于数量小的路径,效果还是很好的。function bestqueue =aco1(nt,nc_max,m ,st, sd ,Alpha ,Beta ,Rho ,Q,gethead,getend)%参数解释:%nt 路径所经过的点的个数;%nc_max 迭代的次数;%m 蚂蚁的个数;%st 起点序号;%sd 终点序号;%Alpha 信息素系数;�ta 启发因子系数;%Rho 蒸发系数;% Q 信息量;%gethead getend 是用来求距离矩阵的,可根据实际情况修改
% nt = 209;%碎片个数full = zeros(nt,nt);tic;%初始化距离矩阵for i =1:nt for t = 1:nt if i ~= t full(i,t) = sum(abs(getend(:,i) - gethead(:,t))); else full(i,t) = inf; end endend% a =full(156,187)eta = 1./full;%启发因子,取距离的倒数% eta% e = eta(4,2)tau = ones(nt,nt);%信息素矩阵% tabu = zeros(nt,nt);%禁忌矩阵,取蚂蚁数量和碎片数量一致,以减少迭代次数nc =1;%初始化迭代次数;rbest=zeros(nc_max,nt);%各代最佳路线rbest(:,1) = (linspace(st,st,nc_max))';rbest(:,nt) =(linspace(sd,sd,nc_max))'; lbest=zeros(nc_max,1);%各代最佳路线的长度pathlen = 0;%临时记录每代最佳路线长度stime = 1;%记录代数进度for i = 1:nc_max % 代数循环 delta_tau=zeros(nt,nt);%初始化改变量 stime for t = 1:m % 对蚂蚁群体的循环, tabu=zeros(1,nt);%禁忌向量,标记已访问的碎片,初试值设为0,访问之后则变为1; viseted = zeros(1,nt);%记录已访问的元素的位置 tabu(st) = 1;%st为起点,在此表示为碎片矩阵的编号,因为已经将蚁群放在起点,故也应将禁忌向量和位置向量的状态进行修改 tabu(sd) =1;%同上 visited(nt) = sd ;%同上; visited(1) = st;%同上; ht = 0; for r = 2:nt-1 %记录了还没访问的图片编号 vp = 1;%visited指示量 pp = [];%置空的概率向量 jc = 0; %获取尚未访问的位置的向量。 wv = zeros( nt -2 - ht ); for k =1 : nt if tabu(k) == 0 jc = jc +1; wv(jc) = k; end end% a =(tau(visited(end),ju(3))^Alpha)*(eta(visited(end),ju(3))^Beta)% visited(end) %计算选择的概率 for k=1:length(wv) pp(k)=(tau(visited(vp),wv(k))^Alpha)*(eta(visited(vp),wv(k))^Beta);%下一张碎片的选择概率计算,p =(信息素^信息素系数)*(启发因子^启发因子系数) end pp=pp./(sum(pp));%归一化 pcum =cumsum(pp); psl = find(pcum >= rand);%轮盘赌法 to_visit= wv(psl(1)) ;%完成选点 tabu(to_visit) =1; visited(r) = to_visit; ht =ht +1;%已访问碎片个数变化 vp =vp+1; end %路径变化信息 %对单个蚂蚁的路径进行统计 sum1 =0; for pr = 1:nt -1 x = visited(pr); y = visited(pr+1) ; sum1 =sum1 + full(x,y); end% vcell{t} =visited;%元胞记录每个蚂蚁的路径,即碎片顺序;% msum(t) = sum1; %信息素变化; for ww=1:(nt-1) delta_tau(visited(ww),visited(ww+1))=delta_tau(visited(ww),visited(ww+1)) + Q/sum1; end% delta_tau(visited(end),visited(1))=delta_tau(visited(end),visited(1))+Q/(sum1/100);% if t == m & i == nc_max % bestqueue = visited% end if t == m bestqueue = visited end end tau=(1-Rho).*tau+delta_tau; %完成信息素的更新,找出现有的最新的最佳路径,即信息素最多的路径; stime =stime +1;end toc;

⑹ 用蚂蚁算法来实现公交线网优化,谁有源代码

我只告诉你什么是蚂蚁算法: 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
7、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。
说了这么多,蚂蚁究竟是怎么找到食物的呢?
在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
当然,在有一只蚂蚁找到了食物的时候,其他蚂蚁会沿着信息素很快找到食物的。
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。
引申:
跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:
1、多样性
2、正反馈
多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。
引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。
既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。
-----例子-----
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"><HEAD>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312" />
<title>蚁群算法js版</title>
<style>
.ant{
position:absolute;
background-color:#000000;
overflow:hidden;
width:2px;
height:2px;
}
.food{
position:absolute;
background-color:#0000ff;
overflow:hidden;
width:2px;
height:2px;
}
.nest{
position:absolute;
background-color:#ff0000;
overflow:hidden;
width:2px;
height:2px;
}
</style>
<script type="text/JavaScript">
//============================
//系统参数初始化
//----------------------------
//生命体数量与轨迹长度
Unit=10;Path=30;
//生命体速度上下限
v0=2;vM=10;
//生命体加速度变化范围
Kr=0.1;Kv=0.1*(vM-v0);
//生命体运动范围
x0=0;xM=document.documentElement.clientWidth;
y0=0;yM=document.documentElement.clientHeight;
//生命体出生地(巢穴)
xi0=x0+(xM-x0)*Math.random();
yi0=y0+(yM-y0)*Math.random();
str0='<div class="ant" style="left:'+xi0+';top:'+yi0+';"></div>';
//食物所在地
xf=x0+(xM-x0)*Math.random();
yf=y0+(yM-y0)*Math.random();
//气味感知范围
R_2=5*5;
//============================
var r=new Array();
var v=new Array();
var dr=new Array();
var dv=new Array();
var x=new Array();
var y=new Array();
var life=new Array();
//单击暂停
var xi0,yi0,xf,yf;
var Time0,str0;
window.status='pause';
function document.onclick(){
if(window.status=='pause'){
window.status=0;
nest.style.left=xi0;
nest.style.top=yi0;
food.style.left=xf;
food.style.top=yf;
//测试初始化时间用
Time0=(new Date()).getTime();
init(0);
}else{
window.status='pause';
}
}
//窗口大小调整后刷新页面以调整系统参数
function window.onresize(){
// window.location.href=document.location;
}
//初始化函数
function init(i){
if(window.status!='pause'&&i<Unit){
if(!life){
document.body.appendChild(life=document.createElement(str0));
x=xi0;
y=yi0;
r=Math.random();
v=1/Math.random();
dr=Kr*Math.random();
dv=Kv*Math.random();
}
Move(i);
window.status=i+1;
setTimeout('init('+(i+1)+')',i);
// }else{
// alert('生成耗时:'+((new Date()).getTime()-Time0)+'ms');
}
}
//运动函数
Total=Unit*Path;
P2=2*Math.PI;
function Move(i){
if(window.status!='pause'){
k=i%Unit;
X=x[k];
Y=y[k];
R=r[k];
V=v[k];
if(!life){
str='<div class="ant" style="left:'+X+';top:'+Y+';"></div>';
document.body.appendChild(life=document.createElement(str));
}
obj=life;
R+=dr[k]*(2*Math.random()-1);
V+=dv[k]*(2*Math.random()-1);
X+=Math.sin(P2*R)*V;
Y+=Math.cos(P2*R)*V;
//遇到食物原路返回并减小角度变化
distance=(X-xf)*(X-xf)+(Y-yf)*(Y-yf);
if(distance<R_2){
R+=0.5;
r/=2;
v*=2;
}
distance=(X-xi0)*(X-xi0)+(Y-yi0)*(Y-yi0);
if(distance<R_2){
R+=0.5;
r/=2;
v*=2;
}
/*----------------------------------
/*================================*/
//碰撞边界反弹
R=(X<x0||X>xM)?-R:R;
R=(Y<y0||Y>yM)?0.5-R:R;
X=x[k]+Math.sin(P2*R)*V;
Y=y[k]+Math.cos(P2*R)*V;
/*================================*/
//溢出边界重生(类似流星效果)
if(X<x0||X>xM||Y<y0||Y>yM){
X=xi0;
Y=yi0;
}
/*----------------------------------
/*================================*/
//边界限制
x[k]=X=(X<x0)?x0:(X>xM)?xM-2:X;
y[k]=Y=(Y<y0)?y0:(Y>yM)?yM-2:Y;
r[k]=R>1?R-1:R<0?R+1:R;
v[k]=V=(V<v0)?v0:((V<vM)?V:vM);
/*================================*/
obj.style.left=x[k]=X;
obj.style.top=y[k]=Y;
setTimeout('Move('+(i+Unit)%Total+')',Unit);
}
}
//根据浏览器自动加载动画
switch(navigator.appName.toLowerCase()){
case "netscape":
window.addEventListener("load",document.onclick,false);
break;
case "microsoft internet explorer":
default:
window.attachEvent("onload",document.onclick);
break;
}
</script>
</head>
<body scroll="no">
<div id="food" class="food"></div>
<div id="nest" class="nest"></div>
</body>
</html>

⑺ 蚁群算法的问题

蚂蚁究竟是怎么找到食物的呢?在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
当然,在有一只蚂蚁找到了食物的时候,大部分蚂蚁会沿着信息素很快找到食物的。但不排除会出现这样的情况:在最初的时候,一部分蚂蚁通过随机选择了同一条路径,随着这条路径上蚂蚁释放的信息素越来越多,更多的蚂蚁也选择这条路径,但这条路径并不是最优(即最短)的,所以,导致了迭代次数完成后,蚂蚁找到的不是最优解,而是次优解,这种情况下的结果可能对实际应用的意义就不大了。
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。

⑻ 关于蚁群算法的旅游路径优化问题的【英文论文】

这是能帮助 而写的,

⑼ 蚁群算法是什么

蚁群算法,又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。 它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

原理
设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。

然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?

⑽ 请问蚁群算法和遗传算法的优缺点比较(不要一大段一大段的,简洁概括即可)

遗传算法有比较强的全局搜索能力,特别是当交叉概率比较大时,能产生大量的新个体,提高了全局搜索范围,遗传算法适合求解离散问题,具备数学理论支持,但是存在着汉明悬崖等问题。
蚁群算法适合在图上搜索路径问题,计算开销会大。

两者都是随机算法,只不过遗传算法是仿生学的算法;蚁群算法是数学算法,是应用目前最广的算法 。针对不同的研究方向,它所体现出来的优缺点是不一样的,将这两个算法混合,优势互补,提高优化性能,并且分别来求解离散空间的和连续空间的优化问题。

希望可以帮到您,望采纳!

阅读全文

与多条公交线路蚁群算法优化相关的资料

热点内容
app保存草稿怎么用 浏览:806
安卓如何进入proumb 浏览:141
主机虚拟云服务器 浏览:617
删除分区加密的空间会不会恢复 浏览:702
京东app客户上门怎么看搜索量 浏览:739
怎么在农行app购买黄金 浏览:45
c型开发板和单片机 浏览:146
虚拟机建立用户的模板文件夹 浏览:904
无锡代码编程培训班 浏览:631
eps图形数据加密 浏览:933
没有滴滴app怎么打车 浏览:101
大数乘法java 浏览:1001
如何登录服务器看源码 浏览:526
如何做服务器端 浏览:157
注册服务器地址指什么 浏览:434
文本命令行 浏览:98
扑克牌睡眠解压 浏览:196
rc4算法流程图 浏览:161
胡萝卜解压方法 浏览:38
扫描pdf格式软件 浏览:880